1 \input texinfo @c -*-texinfo-*-
4 @settitle CLN, a Class Library for Numbers
5 @c @setchapternewpage off
10 @c I hate putting "@noindent" in front of every paragraph.
16 * CLN: (cln). Class Library for Numbers (C++).
21 @c Don't need the other types of indices.
32 This file documents @sc{cln}, a Class Library for Numbers.
34 Published by Bruno Haible, @code{<haible@@clisp.cons.org>} and
35 Richard B. Kreckel, @code{<kreckel@@ginac.de>}.
37 Copyright (C) Bruno Haible 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005.
38 Copyright (C) Richard B. Kreckel 2000, 2001, 2002, 2003, 2004, 2005.
40 Permission is granted to make and distribute verbatim copies of
41 this manual provided the copyright notice and this permission notice
42 are preserved on all copies.
45 Permission is granted to process this file through TeX and print the
46 results, provided the printed document carries copying permission
47 notice identical to this one except for the removal of this paragraph
48 (this paragraph not being relevant to the printed manual).
51 Permission is granted to copy and distribute modified versions of this
52 manual under the conditions for verbatim copying, provided that the entire
53 resulting derived work is distributed under the terms of a permission
54 notice identical to this one.
56 Permission is granted to copy and distribute translations of this manual
57 into another language, under the above conditions for modified versions,
58 except that this permission notice may be stated in a translation approved
64 @c prevent ugly black rectangles on overfull hbox lines:
67 @title CLN, a Class Library for Numbers
69 @author by Bruno Haible
71 @vskip 0pt plus 1filll
72 Copyright @copyright{} Bruno Haible 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005.
74 Copyright @copyright{} Richard Kreckel 2000, 2001, 2002, 2003, 2004, 2005.
77 Published by Bruno Haible, @code{<haible@@clisp.cons.org>} and
78 Richard Kreckel, @code{<kreckel@@ginac.de>}.
80 Permission is granted to make and distribute verbatim copies of
81 this manual provided the copyright notice and this permission notice
82 are preserved on all copies.
84 Permission is granted to copy and distribute modified versions of this
85 manual under the conditions for verbatim copying, provided that the entire
86 resulting derived work is distributed under the terms of a permission
87 notice identical to this one.
89 Permission is granted to copy and distribute translations of this manual
90 into another language, under the above conditions for modified versions,
91 except that this permission notice may be stated in a translation approved
102 @node Top, Introduction, (dir), (dir)
105 @c * Introduction:: Introduction
109 @node Introduction, Top, Top, Top
110 @comment node-name, next, previous, up
111 @chapter Introduction
114 CLN is a library for computations with all kinds of numbers.
115 It has a rich set of number classes:
119 Integers (with unlimited precision),
125 Floating-point numbers:
135 Long float (with unlimited precision),
142 Modular integers (integers modulo a fixed integer),
145 Univariate polynomials.
149 The subtypes of the complex numbers among these are exactly the
150 types of numbers known to the Common Lisp language. Therefore
151 @code{CLN} can be used for Common Lisp implementations, giving
152 @samp{CLN} another meaning: it becomes an abbreviation of
153 ``Common Lisp Numbers''.
156 The CLN package implements
160 Elementary functions (@code{+}, @code{-}, @code{*}, @code{/}, @code{sqrt},
161 comparisons, @dots{}),
164 Logical functions (logical @code{and}, @code{or}, @code{not}, @dots{}),
167 Transcendental functions (exponential, logarithmic, trigonometric, hyperbolic
168 functions and their inverse functions).
172 CLN is a C++ library. Using C++ as an implementation language provides
176 efficiency: it compiles to machine code,
178 type safety: the C++ compiler knows about the number types and complains
179 if, for example, you try to assign a float to an integer variable.
181 algebraic syntax: You can use the @code{+}, @code{-}, @code{*}, @code{=},
182 @code{==}, @dots{} operators as in C or C++.
186 CLN is memory efficient:
190 Small integers and short floats are immediate, not heap allocated.
192 Heap-allocated memory is reclaimed through an automatic, non-interruptive
197 CLN is speed efficient:
201 The kernel of CLN has been written in assembly language for some CPUs
202 (@code{i386}, @code{m68k}, @code{sparc}, @code{mips}, @code{arm}).
205 On all CPUs, CLN may be configured to use the superefficient low-level
206 routines from GNU GMP version 3.
208 It uses Karatsuba multiplication, which is significantly faster
209 for large numbers than the standard multiplication algorithm.
211 For very large numbers (more than 12000 decimal digits), it uses
213 Sch{@"o}nhage-Strassen
214 @cindex Sch{@"o}nhage-Strassen multiplication
218 @cindex Schnhage-Strassen multiplication
220 multiplication, which is an asymptotically optimal multiplication
221 algorithm, for multiplication, division and radix conversion.
225 CLN aims at being easily integrated into larger software packages:
229 The garbage collection imposes no burden on the main application.
231 The library provides hooks for memory allocation and exceptions.
234 All non-macro identifiers are hidden in namespace @code{cln} in
235 order to avoid name clashes.
239 @chapter Installation
241 This section describes how to install the CLN package on your system.
244 @section Prerequisites
246 @subsection C++ compiler
248 To build CLN, you need a C++ compiler.
249 Actually, you need GNU @code{g++ 2.95} or newer.
251 The following C++ features are used:
252 classes, member functions, overloading of functions and operators,
253 constructors and destructors, inline, const, multiple inheritance,
254 templates and namespaces.
256 The following C++ features are not used:
257 @code{new}, @code{delete}, virtual inheritance, exceptions.
259 CLN relies on semi-automatic ordering of initializations of static and
260 global variables, a feature which I could implement for GNU g++
261 only. Also, it is not known whether this semi-automatic ordering works
262 on all platforms when a non-GNU assembler is being used.
264 @subsection Make utility
267 To build CLN, you also need to have GNU @code{make} installed.
269 Only GNU @code{make} 3.77 is unusable for CLN; other versions work fine.
271 @subsection Sed utility
274 To build CLN on HP-UX, you also need to have GNU @code{sed} installed.
275 This is because the libtool script, which creates the CLN library, relies
276 on @code{sed}, and the vendor's @code{sed} utility on these systems is too
280 @section Building the library
282 As with any autoconfiguring GNU software, installation is as easy as this:
290 If on your system, @samp{make} is not GNU @code{make}, you have to use
291 @samp{gmake} instead of @samp{make} above.
293 The @code{configure} command checks out some features of your system and
294 C++ compiler and builds the @code{Makefile}s. The @code{make} command
295 builds the library. This step may take about an hour on an average workstation.
296 The @code{make check} runs some test to check that no important subroutine
297 has been miscompiled.
299 The @code{configure} command accepts options. To get a summary of them, try
305 Some of the options are explained in detail in the @samp{INSTALL.generic} file.
307 You can specify the C compiler, the C++ compiler and their options through
308 the following environment variables when running @code{configure}:
312 Specifies the C compiler.
315 Flags to be given to the C compiler when compiling programs (not when linking).
318 Specifies the C++ compiler.
321 Flags to be given to the C++ compiler when compiling programs (not when linking).
327 $ CC="gcc" CFLAGS="-O" CXX="g++" CXXFLAGS="-O" ./configure
328 $ CC="gcc -V egcs-2.91.60" CFLAGS="-O -g" \
329 CXX="g++ -V egcs-2.91.60" CXXFLAGS="-O -g" ./configure
330 $ CC="gcc -V 2.95.2" CFLAGS="-O2 -fno-exceptions" \
331 CXX="g++ -V 2.95.2" CFLAGS="-O2 -fno-exceptions" ./configure
332 $ CC="gcc -V 3.0.4" CFLAGS="-O2 -finline-limit=1000 -fno-exceptions" \
333 CXX="g++ -V 3.0.4" CFLAGS="-O2 -finline-limit=1000 -fno-exceptions" \
337 Note that for these environment variables to take effect, you have to set
338 them (assuming a Bourne-compatible shell) on the same line as the
339 @code{configure} command. If you made the settings in earlier shell
340 commands, you have to @code{export} the environment variables before
341 calling @code{configure}. In a @code{csh} shell, you have to use the
342 @samp{setenv} command for setting each of the environment variables.
344 Currently CLN works only with the GNU @code{g++} compiler, and only in
345 optimizing mode. So you should specify at least @code{-O} in the CXXFLAGS,
346 or no CXXFLAGS at all. (If CXXFLAGS is not set, CLN will use @code{-O}.)
348 If you use @code{g++} 3.x, I recommend adding @samp{-finline-limit=1000}
349 to the CXXFLAGS. This is essential for good code.
351 If you use @code{g++} gcc-2.95.x or gcc-3.x , I recommend adding
352 @samp{-fno-exceptions} to the CXXFLAGS. This will likely generate better code.
354 If you use @code{g++} from gcc-3.0.4 or older on Sparc, add either
355 @samp{-O}, @samp{-O1} or @samp{-O2 -fno-schedule-insns} to the
356 CXXFLAGS. With full @samp{-O2}, @code{g++} miscompiles the division
357 routines. If you use @code{g++} older than 2.95.3 on Sparc you should
358 also specify @samp{--disable-shared} because of bad code produced in the
359 shared library. Also, do not use gcc-3.0 on Sparc for compiling CLN, it
362 If you use @code{g++} on OSF/1 or Tru64 using gcc-2.95.x, you should
363 specify @samp{--disable-shared} because of linker problems with
364 duplicate symbols in shared libraries. If you use @code{g++} from
365 gcc-3.0.n, with n larger than 1, you should @emph{not} add
366 @samp{-fno-exceptions} to the CXXFLAGS, since that will generate wrong
367 code (gcc-3.1 is okay again, as is gcc-3.0).
369 Also, please do not compile CLN with @code{g++} using the @code{-O3}
370 optimization level. This leads to inferior code quality.
372 If you use @code{g++} from gcc-3.1, it will need 235 MB of virtual memory.
373 You might need some swap space if your machine doesn't have 512 MB of RAM.
375 By default, both a shared and a static library are built. You can build
376 CLN as a static (or shared) library only, by calling @code{configure} with
377 the option @samp{--disable-shared} (or @samp{--disable-static}). While
378 shared libraries are usually more convenient to use, they may not work
379 on all architectures. Try disabling them if you run into linker
380 problems. Also, they are generally somewhat slower than static
381 libraries so runtime-critical applications should be linked statically.
383 If you use @code{g++} from gcc-3.1 with option @samp{-g}, you will need
384 some disk space: 335 MB for building as both a shared and a static library,
385 or 130 MB when building as a shared library only.
388 @subsection Using the GNU MP Library
391 Starting with version 1.1, CLN may be configured to make use of a
392 preinstalled @code{gmp} library. Please make sure that you have at
393 least @code{gmp} version 3.0 installed since earlier versions are
394 unsupported and likely not to work. Enabling this feature by calling
395 @code{configure} with the option @samp{--with-gmp} is known to be quite
396 a boost for CLN's performance.
398 If you have installed the @code{gmp} library and its header file in
399 some place where your compiler cannot find it by default, you must help
400 @code{configure} by setting @code{CPPFLAGS} and @code{LDFLAGS}. Here is
404 $ CC="gcc" CFLAGS="-O2" CXX="g++" CXXFLAGS="-O2 -fno-exceptions" \
405 CPPFLAGS="-I/opt/gmp/include" LDFLAGS="-L/opt/gmp/lib" ./configure --with-gmp
409 @section Installing the library
412 As with any autoconfiguring GNU software, installation is as easy as this:
418 The @samp{make install} command installs the library and the include files
419 into public places (@file{/usr/local/lib/} and @file{/usr/local/include/},
420 if you haven't specified a @code{--prefix} option to @code{configure}).
421 This step may require superuser privileges.
423 If you have already built the library and wish to install it, but didn't
424 specify @code{--prefix=@dots{}} at configure time, just re-run
425 @code{configure}, giving it the same options as the first time, plus
426 the @code{--prefix=@dots{}} option.
431 You can remove system-dependent files generated by @code{make} through
437 You can remove all files generated by @code{make}, thus reverting to a
438 virgin distribution of CLN, through
445 @chapter Ordinary number types
447 CLN implements the following class hierarchy:
455 Real or complex number
464 +-------------------+-------------------+
466 Rational number Floating-point number
468 <cln/rational.h> <cln/float.h>
470 | +--------------+--------------+--------------+
472 cl_I Short-Float Single-Float Double-Float Long-Float
473 <cln/integer.h> cl_SF cl_FF cl_DF cl_LF
474 <cln/sfloat.h> <cln/ffloat.h> <cln/dfloat.h> <cln/lfloat.h>
477 @cindex @code{cl_number}
478 @cindex abstract class
479 The base class @code{cl_number} is an abstract base class.
480 It is not useful to declare a variable of this type except if you want
481 to completely disable compile-time type checking and use run-time type
486 @cindex complex number
487 The class @code{cl_N} comprises real and complex numbers. There is
488 no special class for complex numbers since complex numbers with imaginary
489 part @code{0} are automatically converted to real numbers.
492 The class @code{cl_R} comprises real numbers of different kinds. It is an
496 @cindex rational number
498 The class @code{cl_RA} comprises exact real numbers: rational numbers, including
499 integers. There is no special class for non-integral rational numbers
500 since rational numbers with denominator @code{1} are automatically converted
504 The class @code{cl_F} implements floating-point approximations to real numbers.
505 It is an abstract class.
508 @section Exact numbers
511 Some numbers are represented as exact numbers: there is no loss of information
512 when such a number is converted from its mathematical value to its internal
513 representation. On exact numbers, the elementary operations (@code{+},
514 @code{-}, @code{*}, @code{/}, comparisons, @dots{}) compute the completely
517 In CLN, the exact numbers are:
521 rational numbers (including integers),
523 complex numbers whose real and imaginary parts are both rational numbers.
526 Rational numbers are always normalized to the form
527 @code{@var{numerator}/@var{denominator}} where the numerator and denominator
528 are coprime integers and the denominator is positive. If the resulting
529 denominator is @code{1}, the rational number is converted to an integer.
531 @cindex immediate numbers
532 Small integers (typically in the range @code{-2^29}@dots{}@code{2^29-1},
533 for 32-bit machines) are especially efficient, because they consume no heap
534 allocation. Otherwise the distinction between these immediate integers
535 (called ``fixnums'') and heap allocated integers (called ``bignums'')
536 is completely transparent.
539 @section Floating-point numbers
540 @cindex floating-point number
542 Not all real numbers can be represented exactly. (There is an easy mathematical
543 proof for this: Only a countable set of numbers can be stored exactly in
544 a computer, even if one assumes that it has unlimited storage. But there
545 are uncountably many real numbers.) So some approximation is needed.
546 CLN implements ordinary floating-point numbers, with mantissa and exponent.
548 @cindex rounding error
549 The elementary operations (@code{+}, @code{-}, @code{*}, @code{/}, @dots{})
550 only return approximate results. For example, the value of the expression
551 @code{(cl_F) 0.3 + (cl_F) 0.4} prints as @samp{0.70000005}, not as
552 @samp{0.7}. Rounding errors like this one are inevitable when computing
553 with floating-point numbers.
555 Nevertheless, CLN rounds the floating-point results of the operations @code{+},
556 @code{-}, @code{*}, @code{/}, @code{sqrt} according to the ``round-to-even''
557 rule: It first computes the exact mathematical result and then returns the
558 floating-point number which is nearest to this. If two floating-point numbers
559 are equally distant from the ideal result, the one with a @code{0} in its least
560 significant mantissa bit is chosen.
562 Similarly, testing floating point numbers for equality @samp{x == y}
563 is gambling with random errors. Better check for @samp{abs(x - y) < epsilon}
564 for some well-chosen @code{epsilon}.
566 Floating point numbers come in four flavors:
571 Short floats, type @code{cl_SF}.
572 They have 1 sign bit, 8 exponent bits (including the exponent's sign),
573 and 17 mantissa bits (including the ``hidden'' bit).
574 They don't consume heap allocation.
578 Single floats, type @code{cl_FF}.
579 They have 1 sign bit, 8 exponent bits (including the exponent's sign),
580 and 24 mantissa bits (including the ``hidden'' bit).
581 In CLN, they are represented as IEEE single-precision floating point numbers.
582 This corresponds closely to the C/C++ type @samp{float}.
586 Double floats, type @code{cl_DF}.
587 They have 1 sign bit, 11 exponent bits (including the exponent's sign),
588 and 53 mantissa bits (including the ``hidden'' bit).
589 In CLN, they are represented as IEEE double-precision floating point numbers.
590 This corresponds closely to the C/C++ type @samp{double}.
594 Long floats, type @code{cl_LF}.
595 They have 1 sign bit, 32 exponent bits (including the exponent's sign),
596 and n mantissa bits (including the ``hidden'' bit), where n >= 64.
597 The precision of a long float is unlimited, but once created, a long float
598 has a fixed precision. (No ``lazy recomputation''.)
601 Of course, computations with long floats are more expensive than those
602 with smaller floating-point formats.
604 CLN does not implement features like NaNs, denormalized numbers and
605 gradual underflow. If the exponent range of some floating-point type
606 is too limited for your application, choose another floating-point type
607 with larger exponent range.
610 As a user of CLN, you can forget about the differences between the
611 four floating-point types and just declare all your floating-point
612 variables as being of type @code{cl_F}. This has the advantage that
613 when you change the precision of some computation (say, from @code{cl_DF}
614 to @code{cl_LF}), you don't have to change the code, only the precision
615 of the initial values. Also, many transcendental functions have been
616 declared as returning a @code{cl_F} when the argument is a @code{cl_F},
617 but such declarations are missing for the types @code{cl_SF}, @code{cl_FF},
618 @code{cl_DF}, @code{cl_LF}. (Such declarations would be wrong if
619 the floating point contagion rule happened to change in the future.)
622 @section Complex numbers
623 @cindex complex number
625 Complex numbers, as implemented by the class @code{cl_N}, have a real
626 part and an imaginary part, both real numbers. A complex number whose
627 imaginary part is the exact number @code{0} is automatically converted
630 Complex numbers can arise from real numbers alone, for example
631 through application of @code{sqrt} or transcendental functions.
637 Conversions from any class to any its superclasses (``base classes'' in
638 C++ terminology) is done automatically.
640 Conversions from the C built-in types @samp{long} and @samp{unsigned long}
641 are provided for the classes @code{cl_I}, @code{cl_RA}, @code{cl_R},
642 @code{cl_N} and @code{cl_number}.
644 Conversions from the C built-in types @samp{int} and @samp{unsigned int}
645 are provided for the classes @code{cl_I}, @code{cl_RA}, @code{cl_R},
646 @code{cl_N} and @code{cl_number}. However, these conversions emphasize
647 efficiency. Their range is therefore limited:
651 The conversion from @samp{int} works only if the argument is < 2^29 and > -2^29.
653 The conversion from @samp{unsigned int} works only if the argument is < 2^29.
656 In a declaration like @samp{cl_I x = 10;} the C++ compiler is able to
657 do the conversion of @code{10} from @samp{int} to @samp{cl_I} at compile time
658 already. On the other hand, code like @samp{cl_I x = 1000000000;} is
660 So, if you want to be sure that an @samp{int} whose magnitude is not guaranteed
661 to be < 2^29 is correctly converted to a @samp{cl_I}, first convert it to a
662 @samp{long}. Similarly, if a large @samp{unsigned int} is to be converted to a
663 @samp{cl_I}, first convert it to an @samp{unsigned long}.
665 Conversions from the C built-in type @samp{float} are provided for the classes
666 @code{cl_FF}, @code{cl_F}, @code{cl_R}, @code{cl_N} and @code{cl_number}.
668 Conversions from the C built-in type @samp{double} are provided for the classes
669 @code{cl_DF}, @code{cl_F}, @code{cl_R}, @code{cl_N} and @code{cl_number}.
671 Conversions from @samp{const char *} are provided for the classes
672 @code{cl_I}, @code{cl_RA},
673 @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}, @code{cl_F},
674 @code{cl_R}, @code{cl_N}.
675 The easiest way to specify a value which is outside of the range of the
676 C++ built-in types is therefore to specify it as a string, like this:
679 cl_I order_of_rubiks_cube_group = "43252003274489856000";
681 Note that this conversion is done at runtime, not at compile-time.
683 Conversions from @code{cl_I} to the C built-in types @samp{int},
684 @samp{unsigned int}, @samp{long}, @samp{unsigned long} are provided through
688 @item int cl_I_to_int (const cl_I& x)
689 @cindex @code{cl_I_to_int ()}
690 @itemx unsigned int cl_I_to_uint (const cl_I& x)
691 @cindex @code{cl_I_to_uint ()}
692 @itemx long cl_I_to_long (const cl_I& x)
693 @cindex @code{cl_I_to_long ()}
694 @itemx unsigned long cl_I_to_ulong (const cl_I& x)
695 @cindex @code{cl_I_to_ulong ()}
696 Returns @code{x} as element of the C type @var{ctype}. If @code{x} is not
697 representable in the range of @var{ctype}, a runtime error occurs.
700 Conversions from the classes @code{cl_I}, @code{cl_RA},
701 @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}, @code{cl_F} and
703 to the C built-in types @samp{float} and @samp{double} are provided through
707 @item float float_approx (const @var{type}& x)
708 @cindex @code{float_approx ()}
709 @itemx double double_approx (const @var{type}& x)
710 @cindex @code{double_approx ()}
711 Returns an approximation of @code{x} of C type @var{ctype}.
712 If @code{abs(x)} is too close to 0 (underflow), 0 is returned.
713 If @code{abs(x)} is too large (overflow), an IEEE infinity is returned.
716 Conversions from any class to any of its subclasses (``derived classes'' in
717 C++ terminology) are not provided. Instead, you can assert and check
718 that a value belongs to a certain subclass, and return it as element of that
719 class, using the @samp{As} and @samp{The} macros.
721 @cindex @code{As()()}
722 @code{As(@var{type})(@var{value})} checks that @var{value} belongs to
723 @var{type} and returns it as such.
724 @cindex @code{The()()}
725 @code{The(@var{type})(@var{value})} assumes that @var{value} belongs to
726 @var{type} and returns it as such. It is your responsibility to ensure
727 that this assumption is valid. Since macros and namespaces don't go
728 together well, there is an equivalent to @samp{The}: the template
736 if (!(x >= 0)) abort();
737 cl_I ten_x_a = The(cl_I)(expt(10,x)); // If x >= 0, 10^x is an integer.
738 // In general, it would be a rational number.
739 cl_I ten_x_b = the<cl_I>(expt(10,x)); // The same as above.
744 @chapter Functions on numbers
746 Each of the number classes declares its mathematical operations in the
747 corresponding include file. For example, if your code operates with
748 objects of type @code{cl_I}, it should @code{#include <cln/integer.h>}.
751 @section Constructing numbers
753 Here is how to create number objects ``from nothing''.
756 @subsection Constructing integers
758 @code{cl_I} objects are most easily constructed from C integers and from
759 strings. See @ref{Conversions}.
762 @subsection Constructing rational numbers
764 @code{cl_RA} objects can be constructed from strings. The syntax
765 for rational numbers is described in @ref{Internal and printed representation}.
766 Another standard way to produce a rational number is through application
767 of @samp{operator /} or @samp{recip} on integers.
770 @subsection Constructing floating-point numbers
772 @code{cl_F} objects with low precision are most easily constructed from
773 C @samp{float} and @samp{double}. See @ref{Conversions}.
775 To construct a @code{cl_F} with high precision, you can use the conversion
776 from @samp{const char *}, but you have to specify the desired precision
777 within the string. (See @ref{Internal and printed representation}.)
780 cl_F e = "0.271828182845904523536028747135266249775724709369996e+1_40";
782 will set @samp{e} to the given value, with a precision of 40 decimal digits.
784 The programmatic way to construct a @code{cl_F} with high precision is
785 through the @code{cl_float} conversion function, see
786 @ref{Conversion to floating-point numbers}. For example, to compute
787 @code{e} to 40 decimal places, first construct 1.0 to 40 decimal places
788 and then apply the exponential function:
790 float_format_t precision = float_format(40);
791 cl_F e = exp(cl_float(1,precision));
795 @subsection Constructing complex numbers
797 Non-real @code{cl_N} objects are normally constructed through the function
799 cl_N complex (const cl_R& realpart, const cl_R& imagpart)
801 See @ref{Elementary complex functions}.
804 @section Elementary functions
806 Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
807 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
808 defines the following operations:
811 @item @var{type} operator + (const @var{type}&, const @var{type}&)
812 @cindex @code{operator + ()}
815 @item @var{type} operator - (const @var{type}&, const @var{type}&)
816 @cindex @code{operator - ()}
819 @item @var{type} operator - (const @var{type}&)
820 Returns the negative of the argument.
822 @item @var{type} plus1 (const @var{type}& x)
823 @cindex @code{plus1 ()}
824 Returns @code{x + 1}.
826 @item @var{type} minus1 (const @var{type}& x)
827 @cindex @code{minus1 ()}
828 Returns @code{x - 1}.
830 @item @var{type} operator * (const @var{type}&, const @var{type}&)
831 @cindex @code{operator * ()}
834 @item @var{type} square (const @var{type}& x)
835 @cindex @code{square ()}
836 Returns @code{x * x}.
839 Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA},
840 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
841 defines the following operations:
844 @item @var{type} operator / (const @var{type}&, const @var{type}&)
845 @cindex @code{operator / ()}
848 @item @var{type} recip (const @var{type}&)
849 @cindex @code{recip ()}
850 Returns the reciprocal of the argument.
853 The class @code{cl_I} doesn't define a @samp{/} operation because
854 in the C/C++ language this operator, applied to integral types,
855 denotes the @samp{floor} or @samp{truncate} operation (which one of these,
856 is implementation dependent). (@xref{Rounding functions}.)
857 Instead, @code{cl_I} defines an ``exact quotient'' function:
860 @item cl_I exquo (const cl_I& x, const cl_I& y)
861 @cindex @code{exquo ()}
862 Checks that @code{y} divides @code{x}, and returns the quotient @code{x}/@code{y}.
865 The following exponentiation functions are defined:
868 @item cl_I expt_pos (const cl_I& x, const cl_I& y)
869 @cindex @code{expt_pos ()}
870 @itemx cl_RA expt_pos (const cl_RA& x, const cl_I& y)
871 @code{y} must be > 0. Returns @code{x^y}.
873 @item cl_RA expt (const cl_RA& x, const cl_I& y)
874 @cindex @code{expt ()}
875 @itemx cl_R expt (const cl_R& x, const cl_I& y)
876 @itemx cl_N expt (const cl_N& x, const cl_I& y)
880 Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
881 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
882 defines the following operation:
885 @item @var{type} abs (const @var{type}& x)
886 @cindex @code{abs ()}
887 Returns the absolute value of @code{x}.
888 This is @code{x} if @code{x >= 0}, and @code{-x} if @code{x <= 0}.
891 The class @code{cl_N} implements this as follows:
894 @item cl_R abs (const cl_N x)
895 Returns the absolute value of @code{x}.
898 Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
899 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
900 defines the following operation:
903 @item @var{type} signum (const @var{type}& x)
904 @cindex @code{signum ()}
905 Returns the sign of @code{x}, in the same number format as @code{x}.
906 This is defined as @code{x / abs(x)} if @code{x} is non-zero, and
907 @code{x} if @code{x} is zero. If @code{x} is real, the value is either
912 @section Elementary rational functions
914 Each of the classes @code{cl_RA}, @code{cl_I} defines the following operations:
917 @item cl_I numerator (const @var{type}& x)
918 @cindex @code{numerator ()}
919 Returns the numerator of @code{x}.
921 @item cl_I denominator (const @var{type}& x)
922 @cindex @code{denominator ()}
923 Returns the denominator of @code{x}.
926 The numerator and denominator of a rational number are normalized in such
927 a way that they have no factor in common and the denominator is positive.
930 @section Elementary complex functions
932 The class @code{cl_N} defines the following operation:
935 @item cl_N complex (const cl_R& a, const cl_R& b)
936 @cindex @code{complex ()}
937 Returns the complex number @code{a+bi}, that is, the complex number with
938 real part @code{a} and imaginary part @code{b}.
941 Each of the classes @code{cl_N}, @code{cl_R} defines the following operations:
944 @item cl_R realpart (const @var{type}& x)
945 @cindex @code{realpart ()}
946 Returns the real part of @code{x}.
948 @item cl_R imagpart (const @var{type}& x)
949 @cindex @code{imagpart ()}
950 Returns the imaginary part of @code{x}.
952 @item @var{type} conjugate (const @var{type}& x)
953 @cindex @code{conjugate ()}
954 Returns the complex conjugate of @code{x}.
957 We have the relations
961 @code{x = complex(realpart(x), imagpart(x))}
963 @code{conjugate(x) = complex(realpart(x), -imagpart(x))}
970 Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
971 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
972 defines the following operations:
975 @item bool operator == (const @var{type}&, const @var{type}&)
976 @cindex @code{operator == ()}
977 @itemx bool operator != (const @var{type}&, const @var{type}&)
978 @cindex @code{operator != ()}
979 Comparison, as in C and C++.
981 @item uint32 equal_hashcode (const @var{type}&)
982 @cindex @code{equal_hashcode ()}
983 Returns a 32-bit hash code that is the same for any two numbers which are
984 the same according to @code{==}. This hash code depends on the number's value,
985 not its type or precision.
987 @item cl_boolean zerop (const @var{type}& x)
988 @cindex @code{zerop ()}
989 Compare against zero: @code{x == 0}
992 Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
993 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
994 defines the following operations:
997 @item cl_signean compare (const @var{type}& x, const @var{type}& y)
998 @cindex @code{compare ()}
999 Compares @code{x} and @code{y}. Returns +1 if @code{x}>@code{y},
1000 -1 if @code{x}<@code{y}, 0 if @code{x}=@code{y}.
1002 @item bool operator <= (const @var{type}&, const @var{type}&)
1003 @cindex @code{operator <= ()}
1004 @itemx bool operator < (const @var{type}&, const @var{type}&)
1005 @cindex @code{operator < ()}
1006 @itemx bool operator >= (const @var{type}&, const @var{type}&)
1007 @cindex @code{operator >= ()}
1008 @itemx bool operator > (const @var{type}&, const @var{type}&)
1009 @cindex @code{operator > ()}
1010 Comparison, as in C and C++.
1012 @item cl_boolean minusp (const @var{type}& x)
1013 @cindex @code{minusp ()}
1014 Compare against zero: @code{x < 0}
1016 @item cl_boolean plusp (const @var{type}& x)
1017 @cindex @code{plusp ()}
1018 Compare against zero: @code{x > 0}
1020 @item @var{type} max (const @var{type}& x, const @var{type}& y)
1021 @cindex @code{max ()}
1022 Return the maximum of @code{x} and @code{y}.
1024 @item @var{type} min (const @var{type}& x, const @var{type}& y)
1025 @cindex @code{min ()}
1026 Return the minimum of @code{x} and @code{y}.
1029 When a floating point number and a rational number are compared, the float
1030 is first converted to a rational number using the function @code{rational}.
1031 Since a floating point number actually represents an interval of real numbers,
1032 the result might be surprising.
1033 For example, @code{(cl_F)(cl_R)"1/3" == (cl_R)"1/3"} returns false because
1034 there is no floating point number whose value is exactly @code{1/3}.
1037 @section Rounding functions
1040 When a real number is to be converted to an integer, there is no ``best''
1041 rounding. The desired rounding function depends on the application.
1042 The Common Lisp and ISO Lisp standards offer four rounding functions:
1046 This is the largest integer <=@code{x}.
1049 This is the smallest integer >=@code{x}.
1052 Among the integers between 0 and @code{x} (inclusive) the one nearest to @code{x}.
1055 The integer nearest to @code{x}. If @code{x} is exactly halfway between two
1056 integers, choose the even one.
1059 These functions have different advantages:
1061 @code{floor} and @code{ceiling} are translation invariant:
1062 @code{floor(x+n) = floor(x) + n} and @code{ceiling(x+n) = ceiling(x) + n}
1063 for every @code{x} and every integer @code{n}.
1065 On the other hand, @code{truncate} and @code{round} are symmetric:
1066 @code{truncate(-x) = -truncate(x)} and @code{round(-x) = -round(x)},
1067 and furthermore @code{round} is unbiased: on the ``average'', it rounds
1068 down exactly as often as it rounds up.
1070 The functions are related like this:
1074 @code{ceiling(m/n) = floor((m+n-1)/n) = floor((m-1)/n)+1}
1075 for rational numbers @code{m/n} (@code{m}, @code{n} integers, @code{n}>0), and
1077 @code{truncate(x) = sign(x) * floor(abs(x))}
1080 Each of the classes @code{cl_R}, @code{cl_RA},
1081 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
1082 defines the following operations:
1085 @item cl_I floor1 (const @var{type}& x)
1086 @cindex @code{floor1 ()}
1087 Returns @code{floor(x)}.
1088 @item cl_I ceiling1 (const @var{type}& x)
1089 @cindex @code{ceiling1 ()}
1090 Returns @code{ceiling(x)}.
1091 @item cl_I truncate1 (const @var{type}& x)
1092 @cindex @code{truncate1 ()}
1093 Returns @code{truncate(x)}.
1094 @item cl_I round1 (const @var{type}& x)
1095 @cindex @code{round1 ()}
1096 Returns @code{round(x)}.
1099 Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
1100 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
1101 defines the following operations:
1104 @item cl_I floor1 (const @var{type}& x, const @var{type}& y)
1105 Returns @code{floor(x/y)}.
1106 @item cl_I ceiling1 (const @var{type}& x, const @var{type}& y)
1107 Returns @code{ceiling(x/y)}.
1108 @item cl_I truncate1 (const @var{type}& x, const @var{type}& y)
1109 Returns @code{truncate(x/y)}.
1110 @item cl_I round1 (const @var{type}& x, const @var{type}& y)
1111 Returns @code{round(x/y)}.
1114 These functions are called @samp{floor1}, @dots{} here instead of
1115 @samp{floor}, @dots{}, because on some systems, system dependent include
1116 files define @samp{floor} and @samp{ceiling} as macros.
1118 In many cases, one needs both the quotient and the remainder of a division.
1119 It is more efficient to compute both at the same time than to perform
1120 two divisions, one for quotient and the next one for the remainder.
1121 The following functions therefore return a structure containing both
1122 the quotient and the remainder. The suffix @samp{2} indicates the number
1123 of ``return values''. The remainder is defined as follows:
1127 for the computation of @code{quotient = floor(x)},
1128 @code{remainder = x - quotient},
1130 for the computation of @code{quotient = floor(x,y)},
1131 @code{remainder = x - quotient*y},
1134 and similarly for the other three operations.
1136 Each of the classes @code{cl_R}, @code{cl_RA},
1137 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
1138 defines the following operations:
1141 @item struct @var{type}_div_t @{ cl_I quotient; @var{type} remainder; @};
1142 @itemx @var{type}_div_t floor2 (const @var{type}& x)
1143 @itemx @var{type}_div_t ceiling2 (const @var{type}& x)
1144 @itemx @var{type}_div_t truncate2 (const @var{type}& x)
1145 @itemx @var{type}_div_t round2 (const @var{type}& x)
1148 Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
1149 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
1150 defines the following operations:
1153 @item struct @var{type}_div_t @{ cl_I quotient; @var{type} remainder; @};
1154 @itemx @var{type}_div_t floor2 (const @var{type}& x, const @var{type}& y)
1155 @cindex @code{floor2 ()}
1156 @itemx @var{type}_div_t ceiling2 (const @var{type}& x, const @var{type}& y)
1157 @cindex @code{ceiling2 ()}
1158 @itemx @var{type}_div_t truncate2 (const @var{type}& x, const @var{type}& y)
1159 @cindex @code{truncate2 ()}
1160 @itemx @var{type}_div_t round2 (const @var{type}& x, const @var{type}& y)
1161 @cindex @code{round2 ()}
1164 Sometimes, one wants the quotient as a floating-point number (of the
1165 same format as the argument, if the argument is a float) instead of as
1166 an integer. The prefix @samp{f} indicates this.
1169 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
1170 defines the following operations:
1173 @item @var{type} ffloor (const @var{type}& x)
1174 @cindex @code{ffloor ()}
1175 @itemx @var{type} fceiling (const @var{type}& x)
1176 @cindex @code{fceiling ()}
1177 @itemx @var{type} ftruncate (const @var{type}& x)
1178 @cindex @code{ftruncate ()}
1179 @itemx @var{type} fround (const @var{type}& x)
1180 @cindex @code{fround ()}
1183 and similarly for class @code{cl_R}, but with return type @code{cl_F}.
1185 The class @code{cl_R} defines the following operations:
1188 @item cl_F ffloor (const @var{type}& x, const @var{type}& y)
1189 @itemx cl_F fceiling (const @var{type}& x, const @var{type}& y)
1190 @itemx cl_F ftruncate (const @var{type}& x, const @var{type}& y)
1191 @itemx cl_F fround (const @var{type}& x, const @var{type}& y)
1194 These functions also exist in versions which return both the quotient
1195 and the remainder. The suffix @samp{2} indicates this.
1198 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
1199 defines the following operations:
1200 @cindex @code{cl_F_fdiv_t}
1201 @cindex @code{cl_SF_fdiv_t}
1202 @cindex @code{cl_FF_fdiv_t}
1203 @cindex @code{cl_DF_fdiv_t}
1204 @cindex @code{cl_LF_fdiv_t}
1207 @item struct @var{type}_fdiv_t @{ @var{type} quotient; @var{type} remainder; @};
1208 @itemx @var{type}_fdiv_t ffloor2 (const @var{type}& x)
1209 @cindex @code{ffloor2 ()}
1210 @itemx @var{type}_fdiv_t fceiling2 (const @var{type}& x)
1211 @cindex @code{fceiling2 ()}
1212 @itemx @var{type}_fdiv_t ftruncate2 (const @var{type}& x)
1213 @cindex @code{ftruncate2 ()}
1214 @itemx @var{type}_fdiv_t fround2 (const @var{type}& x)
1215 @cindex @code{fround2 ()}
1217 and similarly for class @code{cl_R}, but with quotient type @code{cl_F}.
1218 @cindex @code{cl_R_fdiv_t}
1220 The class @code{cl_R} defines the following operations:
1223 @item struct @var{type}_fdiv_t @{ cl_F quotient; cl_R remainder; @};
1224 @itemx @var{type}_fdiv_t ffloor2 (const @var{type}& x, const @var{type}& y)
1225 @itemx @var{type}_fdiv_t fceiling2 (const @var{type}& x, const @var{type}& y)
1226 @itemx @var{type}_fdiv_t ftruncate2 (const @var{type}& x, const @var{type}& y)
1227 @itemx @var{type}_fdiv_t fround2 (const @var{type}& x, const @var{type}& y)
1230 Other applications need only the remainder of a division.
1231 The remainder of @samp{floor} and @samp{ffloor} is called @samp{mod}
1232 (abbreviation of ``modulo''). The remainder @samp{truncate} and
1233 @samp{ftruncate} is called @samp{rem} (abbreviation of ``remainder'').
1237 @code{mod(x,y) = floor2(x,y).remainder = x - floor(x/y)*y}
1239 @code{rem(x,y) = truncate2(x,y).remainder = x - truncate(x/y)*y}
1242 If @code{x} and @code{y} are both >= 0, @code{mod(x,y) = rem(x,y) >= 0}.
1243 In general, @code{mod(x,y)} has the sign of @code{y} or is zero,
1244 and @code{rem(x,y)} has the sign of @code{x} or is zero.
1246 The classes @code{cl_R}, @code{cl_I} define the following operations:
1249 @item @var{type} mod (const @var{type}& x, const @var{type}& y)
1250 @cindex @code{mod ()}
1251 @itemx @var{type} rem (const @var{type}& x, const @var{type}& y)
1252 @cindex @code{rem ()}
1258 Each of the classes @code{cl_R},
1259 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
1260 defines the following operation:
1263 @item @var{type} sqrt (const @var{type}& x)
1264 @cindex @code{sqrt ()}
1265 @code{x} must be >= 0. This function returns the square root of @code{x},
1266 normalized to be >= 0. If @code{x} is the square of a rational number,
1267 @code{sqrt(x)} will be a rational number, else it will return a
1268 floating-point approximation.
1271 The classes @code{cl_RA}, @code{cl_I} define the following operation:
1274 @item cl_boolean sqrtp (const @var{type}& x, @var{type}* root)
1275 @cindex @code{sqrtp ()}
1276 This tests whether @code{x} is a perfect square. If so, it returns true
1277 and the exact square root in @code{*root}, else it returns false.
1280 Furthermore, for integers, similarly:
1283 @item cl_boolean isqrt (const @var{type}& x, @var{type}* root)
1284 @cindex @code{isqrt ()}
1285 @code{x} should be >= 0. This function sets @code{*root} to
1286 @code{floor(sqrt(x))} and returns the same value as @code{sqrtp}:
1287 the boolean value @code{(expt(*root,2) == x)}.
1290 For @code{n}th roots, the classes @code{cl_RA}, @code{cl_I}
1291 define the following operation:
1294 @item cl_boolean rootp (const @var{type}& x, const cl_I& n, @var{type}* root)
1295 @cindex @code{rootp ()}
1296 @code{x} must be >= 0. @code{n} must be > 0.
1297 This tests whether @code{x} is an @code{n}th power of a rational number.
1298 If so, it returns true and the exact root in @code{*root}, else it returns
1302 The only square root function which accepts negative numbers is the one
1303 for class @code{cl_N}:
1306 @item cl_N sqrt (const cl_N& z)
1307 @cindex @code{sqrt ()}
1308 Returns the square root of @code{z}, as defined by the formula
1309 @code{sqrt(z) = exp(log(z)/2)}. Conversion to a floating-point type
1310 or to a complex number are done if necessary. The range of the result is the
1311 right half plane @code{realpart(sqrt(z)) >= 0}
1312 including the positive imaginary axis and 0, but excluding
1313 the negative imaginary axis.
1314 The result is an exact number only if @code{z} is an exact number.
1318 @section Transcendental functions
1319 @cindex transcendental functions
1321 The transcendental functions return an exact result if the argument
1322 is exact and the result is exact as well. Otherwise they must return
1323 inexact numbers even if the argument is exact.
1324 For example, @code{cos(0) = 1} returns the rational number @code{1}.
1327 @subsection Exponential and logarithmic functions
1330 @item cl_R exp (const cl_R& x)
1331 @cindex @code{exp ()}
1332 @itemx cl_N exp (const cl_N& x)
1333 Returns the exponential function of @code{x}. This is @code{e^x} where
1334 @code{e} is the base of the natural logarithms. The range of the result
1335 is the entire complex plane excluding 0.
1337 @item cl_R ln (const cl_R& x)
1338 @cindex @code{ln ()}
1339 @code{x} must be > 0. Returns the (natural) logarithm of x.
1341 @item cl_N log (const cl_N& x)
1342 @cindex @code{log ()}
1343 Returns the (natural) logarithm of x. If @code{x} is real and positive,
1344 this is @code{ln(x)}. In general, @code{log(x) = log(abs(x)) + i*phase(x)}.
1345 The range of the result is the strip in the complex plane
1346 @code{-pi < imagpart(log(x)) <= pi}.
1348 @item cl_R phase (const cl_N& x)
1349 @cindex @code{phase ()}
1350 Returns the angle part of @code{x} in its polar representation as a
1351 complex number. That is, @code{phase(x) = atan(realpart(x),imagpart(x))}.
1352 This is also the imaginary part of @code{log(x)}.
1353 The range of the result is the interval @code{-pi < phase(x) <= pi}.
1354 The result will be an exact number only if @code{zerop(x)} or
1355 if @code{x} is real and positive.
1357 @item cl_R log (const cl_R& a, const cl_R& b)
1358 @code{a} and @code{b} must be > 0. Returns the logarithm of @code{a} with
1359 respect to base @code{b}. @code{log(a,b) = ln(a)/ln(b)}.
1360 The result can be exact only if @code{a = 1} or if @code{a} and @code{b}
1363 @item cl_N log (const cl_N& a, const cl_N& b)
1364 Returns the logarithm of @code{a} with respect to base @code{b}.
1365 @code{log(a,b) = log(a)/log(b)}.
1367 @item cl_N expt (const cl_N& x, const cl_N& y)
1368 @cindex @code{expt ()}
1369 Exponentiation: Returns @code{x^y = exp(y*log(x))}.
1372 The constant e = exp(1) = 2.71828@dots{} is returned by the following functions:
1375 @item cl_F exp1 (float_format_t f)
1376 @cindex @code{exp1 ()}
1377 Returns e as a float of format @code{f}.
1379 @item cl_F exp1 (const cl_F& y)
1380 Returns e in the float format of @code{y}.
1382 @item cl_F exp1 (void)
1383 Returns e as a float of format @code{default_float_format}.
1387 @subsection Trigonometric functions
1390 @item cl_R sin (const cl_R& x)
1391 @cindex @code{sin ()}
1392 Returns @code{sin(x)}. The range of the result is the interval
1393 @code{-1 <= sin(x) <= 1}.
1395 @item cl_N sin (const cl_N& z)
1396 Returns @code{sin(z)}. The range of the result is the entire complex plane.
1398 @item cl_R cos (const cl_R& x)
1399 @cindex @code{cos ()}
1400 Returns @code{cos(x)}. The range of the result is the interval
1401 @code{-1 <= cos(x) <= 1}.
1403 @item cl_N cos (const cl_N& x)
1404 Returns @code{cos(z)}. The range of the result is the entire complex plane.
1406 @item struct cos_sin_t @{ cl_R cos; cl_R sin; @};
1407 @cindex @code{cos_sin_t}
1408 @itemx cos_sin_t cos_sin (const cl_R& x)
1409 Returns both @code{sin(x)} and @code{cos(x)}. This is more efficient than
1410 @cindex @code{cos_sin ()}
1411 computing them separately. The relation @code{cos^2 + sin^2 = 1} will
1412 hold only approximately.
1414 @item cl_R tan (const cl_R& x)
1415 @cindex @code{tan ()}
1416 @itemx cl_N tan (const cl_N& x)
1417 Returns @code{tan(x) = sin(x)/cos(x)}.
1419 @item cl_N cis (const cl_R& x)
1420 @cindex @code{cis ()}
1421 @itemx cl_N cis (const cl_N& x)
1422 Returns @code{exp(i*x)}. The name @samp{cis} means ``cos + i sin'', because
1423 @code{e^(i*x) = cos(x) + i*sin(x)}.
1426 @cindex @code{asin ()}
1427 @item cl_N asin (const cl_N& z)
1428 Returns @code{arcsin(z)}. This is defined as
1429 @code{arcsin(z) = log(iz+sqrt(1-z^2))/i} and satisfies
1430 @code{arcsin(-z) = -arcsin(z)}.
1431 The range of the result is the strip in the complex domain
1432 @code{-pi/2 <= realpart(arcsin(z)) <= pi/2}, excluding the numbers
1433 with @code{realpart = -pi/2} and @code{imagpart < 0} and the numbers
1434 with @code{realpart = pi/2} and @code{imagpart > 0}.
1436 Proof: This follows from arcsin(z) = arsinh(iz)/i and the corresponding
1440 @item cl_N acos (const cl_N& z)
1441 @cindex @code{acos ()}
1442 Returns @code{arccos(z)}. This is defined as
1443 @code{arccos(z) = pi/2 - arcsin(z) = log(z+i*sqrt(1-z^2))/i}
1446 @code{arccos(z) = 2*log(sqrt((1+z)/2)+i*sqrt((1-z)/2))/i}
1448 and satisfies @code{arccos(-z) = pi - arccos(z)}.
1449 The range of the result is the strip in the complex domain
1450 @code{0 <= realpart(arcsin(z)) <= pi}, excluding the numbers
1451 with @code{realpart = 0} and @code{imagpart < 0} and the numbers
1452 with @code{realpart = pi} and @code{imagpart > 0}.
1454 Proof: This follows from the results about arcsin.
1458 @cindex @code{atan ()}
1459 @item cl_R atan (const cl_R& x, const cl_R& y)
1460 Returns the angle of the polar representation of the complex number
1461 @code{x+iy}. This is @code{atan(y/x)} if @code{x>0}. The range of
1462 the result is the interval @code{-pi < atan(x,y) <= pi}. The result will
1463 be an exact number only if @code{x > 0} and @code{y} is the exact @code{0}.
1464 WARNING: In Common Lisp, this function is called as @code{(atan y x)},
1465 with reversed order of arguments.
1467 @item cl_R atan (const cl_R& x)
1468 Returns @code{arctan(x)}. This is the same as @code{atan(1,x)}. The range
1469 of the result is the interval @code{-pi/2 < atan(x) < pi/2}. The result
1470 will be an exact number only if @code{x} is the exact @code{0}.
1472 @item cl_N atan (const cl_N& z)
1473 Returns @code{arctan(z)}. This is defined as
1474 @code{arctan(z) = (log(1+iz)-log(1-iz)) / 2i} and satisfies
1475 @code{arctan(-z) = -arctan(z)}. The range of the result is
1476 the strip in the complex domain
1477 @code{-pi/2 <= realpart(arctan(z)) <= pi/2}, excluding the numbers
1478 with @code{realpart = -pi/2} and @code{imagpart >= 0} and the numbers
1479 with @code{realpart = pi/2} and @code{imagpart <= 0}.
1481 Proof: arctan(z) = artanh(iz)/i, we know the range of the artanh function.
1487 @cindex Archimedes' constant
1488 Archimedes' constant pi = 3.14@dots{} is returned by the following functions:
1491 @item cl_F pi (float_format_t f)
1492 @cindex @code{pi ()}
1493 Returns pi as a float of format @code{f}.
1495 @item cl_F pi (const cl_F& y)
1496 Returns pi in the float format of @code{y}.
1498 @item cl_F pi (void)
1499 Returns pi as a float of format @code{default_float_format}.
1503 @subsection Hyperbolic functions
1506 @item cl_R sinh (const cl_R& x)
1507 @cindex @code{sinh ()}
1508 Returns @code{sinh(x)}.
1510 @item cl_N sinh (const cl_N& z)
1511 Returns @code{sinh(z)}. The range of the result is the entire complex plane.
1513 @item cl_R cosh (const cl_R& x)
1514 @cindex @code{cosh ()}
1515 Returns @code{cosh(x)}. The range of the result is the interval
1516 @code{cosh(x) >= 1}.
1518 @item cl_N cosh (const cl_N& z)
1519 Returns @code{cosh(z)}. The range of the result is the entire complex plane.
1521 @item struct cosh_sinh_t @{ cl_R cosh; cl_R sinh; @};
1522 @cindex @code{cosh_sinh_t}
1523 @itemx cosh_sinh_t cosh_sinh (const cl_R& x)
1524 @cindex @code{cosh_sinh ()}
1525 Returns both @code{sinh(x)} and @code{cosh(x)}. This is more efficient than
1526 computing them separately. The relation @code{cosh^2 - sinh^2 = 1} will
1527 hold only approximately.
1529 @item cl_R tanh (const cl_R& x)
1530 @cindex @code{tanh ()}
1531 @itemx cl_N tanh (const cl_N& x)
1532 Returns @code{tanh(x) = sinh(x)/cosh(x)}.
1534 @item cl_N asinh (const cl_N& z)
1535 @cindex @code{asinh ()}
1536 Returns @code{arsinh(z)}. This is defined as
1537 @code{arsinh(z) = log(z+sqrt(1+z^2))} and satisfies
1538 @code{arsinh(-z) = -arsinh(z)}.
1540 Proof: Knowing the range of log, we know -pi < imagpart(arsinh(z)) <= pi.
1541 Actually, z+sqrt(1+z^2) can never be real and <0, so
1542 -pi < imagpart(arsinh(z)) < pi.
1543 We have (z+sqrt(1+z^2))*(-z+sqrt(1+(-z)^2)) = (1+z^2)-z^2 = 1, hence the
1544 logs of both factors sum up to 0 mod 2*pi*i, hence to 0.
1546 The range of the result is the strip in the complex domain
1547 @code{-pi/2 <= imagpart(arsinh(z)) <= pi/2}, excluding the numbers
1548 with @code{imagpart = -pi/2} and @code{realpart > 0} and the numbers
1549 with @code{imagpart = pi/2} and @code{realpart < 0}.
1551 Proof: Write z = x+iy. Because of arsinh(-z) = -arsinh(z), we may assume
1552 that z is in Range(sqrt), that is, x>=0 and, if x=0, then y>=0.
1553 If x > 0, then Re(z+sqrt(1+z^2)) = x + Re(sqrt(1+z^2)) >= x > 0,
1554 so -pi/2 < imagpart(log(z+sqrt(1+z^2))) < pi/2.
1555 If x = 0 and y >= 0, arsinh(z) = log(i*y+sqrt(1-y^2)).
1556 If y <= 1, the realpart is 0 and the imagpart is >= 0 and <= pi/2.
1557 If y >= 1, the imagpart is pi/2 and the realpart is
1558 log(y+sqrt(y^2-1)) >= log(y) >= 0.
1561 Moreover, if z is in Range(sqrt),
1562 log(sqrt(1+z^2)+z) = 2 artanh(z/(1+sqrt(1+z^2)))
1563 (for a proof, see file src/cl_C_asinh.cc).
1566 @item cl_N acosh (const cl_N& z)
1567 @cindex @code{acosh ()}
1568 Returns @code{arcosh(z)}. This is defined as
1569 @code{arcosh(z) = 2*log(sqrt((z+1)/2)+sqrt((z-1)/2))}.
1570 The range of the result is the half-strip in the complex domain
1571 @code{-pi < imagpart(arcosh(z)) <= pi, realpart(arcosh(z)) >= 0},
1572 excluding the numbers with @code{realpart = 0} and @code{-pi < imagpart < 0}.
1574 Proof: sqrt((z+1)/2) and sqrt((z-1)/2)) lie in Range(sqrt), hence does
1575 their sum, hence its log has an imagpart <= pi/2 and > -pi/2.
1576 If z is in Range(sqrt), we have
1577 sqrt(z+1)*sqrt(z-1) = sqrt(z^2-1)
1578 ==> (sqrt((z+1)/2)+sqrt((z-1)/2))^2 = (z+1)/2 + sqrt(z^2-1) + (z-1)/2
1580 ==> arcosh(z) = log(z+sqrt(z^2-1)) mod 2*pi*i
1581 and since the imagpart of both expressions is > -pi, <= pi
1582 ==> arcosh(z) = log(z+sqrt(z^2-1))
1583 To prove that the realpart of this is >= 0, write z = x+iy with x>=0,
1584 z^2-1 = u+iv with u = x^2-y^2-1, v = 2xy,
1585 sqrt(z^2-1) = p+iq with p = sqrt((sqrt(u^2+v^2)+u)/2) >= 0,
1586 q = sqrt((sqrt(u^2+v^2)-u)/2) * sign(v),
1587 then |z+sqrt(z^2-1)|^2 = |x+iy + p+iq|^2
1589 = x^2 + 2xp + p^2 + y^2 + 2yq + q^2
1590 >= x^2 + p^2 + y^2 + q^2 (since x>=0, p>=0, yq>=0)
1591 = x^2 + y^2 + sqrt(u^2+v^2)
1596 hence realpart(log(z+sqrt(z^2-1))) = log(|z+sqrt(z^2-1)|) >= 0.
1597 Equality holds only if y = 0 and u <= 0, i.e. 0 <= x < 1.
1598 In this case arcosh(z) = log(x+i*sqrt(1-x^2)) has imagpart >=0.
1599 Otherwise, -z is in Range(sqrt).
1600 If y != 0, sqrt((z+1)/2) = i^sign(y) * sqrt((-z-1)/2),
1601 sqrt((z-1)/2) = i^sign(y) * sqrt((-z+1)/2),
1602 hence arcosh(z) = sign(y)*pi/2*i + arcosh(-z),
1603 and this has realpart > 0.
1604 If y = 0 and -1<=x<=0, we still have sqrt(z+1)*sqrt(z-1) = sqrt(z^2-1),
1605 ==> arcosh(z) = log(z+sqrt(z^2-1)) = log(x+i*sqrt(1-x^2))
1606 has realpart = 0 and imagpart > 0.
1607 If y = 0 and x<=-1, however, sqrt(z+1)*sqrt(z-1) = - sqrt(z^2-1),
1608 ==> arcosh(z) = log(z-sqrt(z^2-1)) = pi*i + arcosh(-z).
1609 This has realpart >= 0 and imagpart = pi.
1612 @item cl_N atanh (const cl_N& z)
1613 @cindex @code{atanh ()}
1614 Returns @code{artanh(z)}. This is defined as
1615 @code{artanh(z) = (log(1+z)-log(1-z)) / 2} and satisfies
1616 @code{artanh(-z) = -artanh(z)}. The range of the result is
1617 the strip in the complex domain
1618 @code{-pi/2 <= imagpart(artanh(z)) <= pi/2}, excluding the numbers
1619 with @code{imagpart = -pi/2} and @code{realpart <= 0} and the numbers
1620 with @code{imagpart = pi/2} and @code{realpart >= 0}.
1622 Proof: Write z = x+iy. Examine
1623 imagpart(artanh(z)) = (atan(1+x,y) - atan(1-x,-y))/2.
1625 x > 1 ==> imagpart = -pi/2, realpart = 1/2 log((x+1)/(x-1)) > 0,
1626 x < -1 ==> imagpart = pi/2, realpart = 1/2 log((-x-1)/(-x+1)) < 0,
1627 |x| < 1 ==> imagpart = 0
1630 = (atan(1+x,y) - atan(1-x,-y))/2
1631 = ((pi/2 - atan((1+x)/y)) - (-pi/2 - atan((1-x)/-y)))/2
1632 = (pi - atan((1+x)/y) - atan((1-x)/y))/2
1633 > (pi - pi/2 - pi/2 )/2 = 0
1634 and (1+x)/y > (1-x)/y
1635 ==> atan((1+x)/y) > atan((-1+x)/y) = - atan((1-x)/y)
1636 ==> imagpart < pi/2.
1637 Hence 0 < imagpart < pi/2.
1639 By artanh(z) = -artanh(-z) and case 2, -pi/2 < imagpart < 0.
1644 @subsection Euler gamma
1645 @cindex Euler's constant
1647 Euler's constant C = 0.577@dots{} is returned by the following functions:
1650 @item cl_F eulerconst (float_format_t f)
1651 @cindex @code{eulerconst ()}
1652 Returns Euler's constant as a float of format @code{f}.
1654 @item cl_F eulerconst (const cl_F& y)
1655 Returns Euler's constant in the float format of @code{y}.
1657 @item cl_F eulerconst (void)
1658 Returns Euler's constant as a float of format @code{default_float_format}.
1661 Catalan's constant G = 0.915@dots{} is returned by the following functions:
1662 @cindex Catalan's constant
1665 @item cl_F catalanconst (float_format_t f)
1666 @cindex @code{catalanconst ()}
1667 Returns Catalan's constant as a float of format @code{f}.
1669 @item cl_F catalanconst (const cl_F& y)
1670 Returns Catalan's constant in the float format of @code{y}.
1672 @item cl_F catalanconst (void)
1673 Returns Catalan's constant as a float of format @code{default_float_format}.
1677 @subsection Riemann zeta
1678 @cindex Riemann's zeta
1680 Riemann's zeta function at an integral point @code{s>1} is returned by the
1681 following functions:
1684 @item cl_F zeta (int s, float_format_t f)
1685 @cindex @code{zeta ()}
1686 Returns Riemann's zeta function at @code{s} as a float of format @code{f}.
1688 @item cl_F zeta (int s, const cl_F& y)
1689 Returns Riemann's zeta function at @code{s} in the float format of @code{y}.
1691 @item cl_F zeta (int s)
1692 Returns Riemann's zeta function at @code{s} as a float of format
1693 @code{default_float_format}.
1697 @section Functions on integers
1699 @subsection Logical functions
1701 Integers, when viewed as in two's complement notation, can be thought as
1702 infinite bit strings where the bits' values eventually are constant.
1709 The logical operations view integers as such bit strings and operate
1710 on each of the bit positions in parallel.
1713 @item cl_I lognot (const cl_I& x)
1714 @cindex @code{lognot ()}
1715 @itemx cl_I operator ~ (const cl_I& x)
1716 @cindex @code{operator ~ ()}
1717 Logical not, like @code{~x} in C. This is the same as @code{-1-x}.
1719 @item cl_I logand (const cl_I& x, const cl_I& y)
1720 @cindex @code{logand ()}
1721 @itemx cl_I operator & (const cl_I& x, const cl_I& y)
1722 @cindex @code{operator & ()}
1723 Logical and, like @code{x & y} in C.
1725 @item cl_I logior (const cl_I& x, const cl_I& y)
1726 @cindex @code{logior ()}
1727 @itemx cl_I operator | (const cl_I& x, const cl_I& y)
1728 @cindex @code{operator | ()}
1729 Logical (inclusive) or, like @code{x | y} in C.
1731 @item cl_I logxor (const cl_I& x, const cl_I& y)
1732 @cindex @code{logxor ()}
1733 @itemx cl_I operator ^ (const cl_I& x, const cl_I& y)
1734 @cindex @code{operator ^ ()}
1735 Exclusive or, like @code{x ^ y} in C.
1737 @item cl_I logeqv (const cl_I& x, const cl_I& y)
1738 @cindex @code{logeqv ()}
1739 Bitwise equivalence, like @code{~(x ^ y)} in C.
1741 @item cl_I lognand (const cl_I& x, const cl_I& y)
1742 @cindex @code{lognand ()}
1743 Bitwise not and, like @code{~(x & y)} in C.
1745 @item cl_I lognor (const cl_I& x, const cl_I& y)
1746 @cindex @code{lognor ()}
1747 Bitwise not or, like @code{~(x | y)} in C.
1749 @item cl_I logandc1 (const cl_I& x, const cl_I& y)
1750 @cindex @code{logandc1 ()}
1751 Logical and, complementing the first argument, like @code{~x & y} in C.
1753 @item cl_I logandc2 (const cl_I& x, const cl_I& y)
1754 @cindex @code{logandc2 ()}
1755 Logical and, complementing the second argument, like @code{x & ~y} in C.
1757 @item cl_I logorc1 (const cl_I& x, const cl_I& y)
1758 @cindex @code{logorc1 ()}
1759 Logical or, complementing the first argument, like @code{~x | y} in C.
1761 @item cl_I logorc2 (const cl_I& x, const cl_I& y)
1762 @cindex @code{logorc2 ()}
1763 Logical or, complementing the second argument, like @code{x | ~y} in C.
1766 These operations are all available though the function
1768 @item cl_I boole (cl_boole op, const cl_I& x, const cl_I& y)
1769 @cindex @code{boole ()}
1771 where @code{op} must have one of the 16 values (each one stands for a function
1772 which combines two bits into one bit): @code{boole_clr}, @code{boole_set},
1773 @code{boole_1}, @code{boole_2}, @code{boole_c1}, @code{boole_c2},
1774 @code{boole_and}, @code{boole_ior}, @code{boole_xor}, @code{boole_eqv},
1775 @code{boole_nand}, @code{boole_nor}, @code{boole_andc1}, @code{boole_andc2},
1776 @code{boole_orc1}, @code{boole_orc2}.
1777 @cindex @code{boole_clr}
1778 @cindex @code{boole_set}
1779 @cindex @code{boole_1}
1780 @cindex @code{boole_2}
1781 @cindex @code{boole_c1}
1782 @cindex @code{boole_c2}
1783 @cindex @code{boole_and}
1784 @cindex @code{boole_xor}
1785 @cindex @code{boole_eqv}
1786 @cindex @code{boole_nand}
1787 @cindex @code{boole_nor}
1788 @cindex @code{boole_andc1}
1789 @cindex @code{boole_andc2}
1790 @cindex @code{boole_orc1}
1791 @cindex @code{boole_orc2}
1794 Other functions that view integers as bit strings:
1797 @item cl_boolean logtest (const cl_I& x, const cl_I& y)
1798 @cindex @code{logtest ()}
1799 Returns true if some bit is set in both @code{x} and @code{y}, i.e. if
1800 @code{logand(x,y) != 0}.
1802 @item cl_boolean logbitp (const cl_I& n, const cl_I& x)
1803 @cindex @code{logbitp ()}
1804 Returns true if the @code{n}th bit (from the right) of @code{x} is set.
1805 Bit 0 is the least significant bit.
1807 @item uintC logcount (const cl_I& x)
1808 @cindex @code{logcount ()}
1809 Returns the number of one bits in @code{x}, if @code{x} >= 0, or
1810 the number of zero bits in @code{x}, if @code{x} < 0.
1813 The following functions operate on intervals of bits in integers.
1816 struct cl_byte @{ uintC size; uintC position; @};
1818 @cindex @code{cl_byte}
1819 represents the bit interval containing the bits
1820 @code{position}@dots{}@code{position+size-1} of an integer.
1821 The constructor @code{cl_byte(size,position)} constructs a @code{cl_byte}.
1824 @item cl_I ldb (const cl_I& n, const cl_byte& b)
1825 @cindex @code{ldb ()}
1826 extracts the bits of @code{n} described by the bit interval @code{b}
1827 and returns them as a nonnegative integer with @code{b.size} bits.
1829 @item cl_boolean ldb_test (const cl_I& n, const cl_byte& b)
1830 @cindex @code{ldb_test ()}
1831 Returns true if some bit described by the bit interval @code{b} is set in
1834 @item cl_I dpb (const cl_I& newbyte, const cl_I& n, const cl_byte& b)
1835 @cindex @code{dpb ()}
1836 Returns @code{n}, with the bits described by the bit interval @code{b}
1837 replaced by @code{newbyte}. Only the lowest @code{b.size} bits of
1838 @code{newbyte} are relevant.
1841 The functions @code{ldb} and @code{dpb} implicitly shift. The following
1842 functions are their counterparts without shifting:
1845 @item cl_I mask_field (const cl_I& n, const cl_byte& b)
1846 @cindex @code{mask_field ()}
1847 returns an integer with the bits described by the bit interval @code{b}
1848 copied from the corresponding bits in @code{n}, the other bits zero.
1850 @item cl_I deposit_field (const cl_I& newbyte, const cl_I& n, const cl_byte& b)
1851 @cindex @code{deposit_field ()}
1852 returns an integer where the bits described by the bit interval @code{b}
1853 come from @code{newbyte} and the other bits come from @code{n}.
1856 The following relations hold:
1860 @code{ldb (n, b) = mask_field(n, b) >> b.position},
1862 @code{dpb (newbyte, n, b) = deposit_field (newbyte << b.position, n, b)},
1864 @code{deposit_field(newbyte,n,b) = n ^ mask_field(n,b) ^ mask_field(new_byte,b)}.
1867 The following operations on integers as bit strings are efficient shortcuts
1868 for common arithmetic operations:
1871 @item cl_boolean oddp (const cl_I& x)
1872 @cindex @code{oddp ()}
1873 Returns true if the least significant bit of @code{x} is 1. Equivalent to
1874 @code{mod(x,2) != 0}.
1876 @item cl_boolean evenp (const cl_I& x)
1877 @cindex @code{evenp ()}
1878 Returns true if the least significant bit of @code{x} is 0. Equivalent to
1879 @code{mod(x,2) == 0}.
1881 @item cl_I operator << (const cl_I& x, const cl_I& n)
1882 @cindex @code{operator << ()}
1883 Shifts @code{x} by @code{n} bits to the left. @code{n} should be >=0.
1884 Equivalent to @code{x * expt(2,n)}.
1886 @item cl_I operator >> (const cl_I& x, const cl_I& n)
1887 @cindex @code{operator >> ()}
1888 Shifts @code{x} by @code{n} bits to the right. @code{n} should be >=0.
1889 Bits shifted out to the right are thrown away.
1890 Equivalent to @code{floor(x / expt(2,n))}.
1892 @item cl_I ash (const cl_I& x, const cl_I& y)
1893 @cindex @code{ash ()}
1894 Shifts @code{x} by @code{y} bits to the left (if @code{y}>=0) or
1895 by @code{-y} bits to the right (if @code{y}<=0). In other words, this
1896 returns @code{floor(x * expt(2,y))}.
1898 @item uintC integer_length (const cl_I& x)
1899 @cindex @code{integer_length ()}
1900 Returns the number of bits (excluding the sign bit) needed to represent @code{x}
1901 in two's complement notation. This is the smallest n >= 0 such that
1902 -2^n <= x < 2^n. If x > 0, this is the unique n > 0 such that
1905 @item uintC ord2 (const cl_I& x)
1906 @cindex @code{ord2 ()}
1907 @code{x} must be non-zero. This function returns the number of 0 bits at the
1908 right of @code{x} in two's complement notation. This is the largest n >= 0
1909 such that 2^n divides @code{x}.
1911 @item uintC power2p (const cl_I& x)
1912 @cindex @code{power2p ()}
1913 @code{x} must be > 0. This function checks whether @code{x} is a power of 2.
1914 If @code{x} = 2^(n-1), it returns n. Else it returns 0.
1915 (See also the function @code{logp}.)
1919 @subsection Number theoretic functions
1922 @item uint32 gcd (unsigned long a, unsigned long b)
1923 @cindex @code{gcd ()}
1924 @itemx cl_I gcd (const cl_I& a, const cl_I& b)
1925 This function returns the greatest common divisor of @code{a} and @code{b},
1926 normalized to be >= 0.
1928 @item cl_I xgcd (const cl_I& a, const cl_I& b, cl_I* u, cl_I* v)
1929 @cindex @code{xgcd ()}
1930 This function (``extended gcd'') returns the greatest common divisor @code{g} of
1931 @code{a} and @code{b} and at the same time the representation of @code{g}
1932 as an integral linear combination of @code{a} and @code{b}:
1933 @code{u} and @code{v} with @code{u*a+v*b = g}, @code{g} >= 0.
1934 @code{u} and @code{v} will be normalized to be of smallest possible absolute
1935 value, in the following sense: If @code{a} and @code{b} are non-zero, and
1936 @code{abs(a) != abs(b)}, @code{u} and @code{v} will satisfy the inequalities
1937 @code{abs(u) <= abs(b)/(2*g)}, @code{abs(v) <= abs(a)/(2*g)}.
1939 @item cl_I lcm (const cl_I& a, const cl_I& b)
1940 @cindex @code{lcm ()}
1941 This function returns the least common multiple of @code{a} and @code{b},
1942 normalized to be >= 0.
1944 @item cl_boolean logp (const cl_I& a, const cl_I& b, cl_RA* l)
1945 @cindex @code{logp ()}
1946 @itemx cl_boolean logp (const cl_RA& a, const cl_RA& b, cl_RA* l)
1947 @code{a} must be > 0. @code{b} must be >0 and != 1. If log(a,b) is
1948 rational number, this function returns true and sets *l = log(a,b), else
1951 @item int jacobi (signed long a, signed long b)
1952 @cindex @code{jacobi()}
1953 @itemx int jacobi (const cl_I& a, const cl_I& b)
1954 Returns the Jacobi symbol
1956 $\left({a\over b}\right)$,
1961 @code{a,b} must be integers, @code{b>0} and odd. The result is 0
1964 @item cl_boolean isprobprime (const cl_I& n)
1966 @cindex @code{isprobprime()}
1967 Returns true if @code{n} is a small prime or passes the Miller-Rabin
1968 primality test. The probability of a false positive is 1:10^30.
1970 @item cl_I nextprobprime (const cl_R& x)
1971 @cindex @code{nextprobprime()}
1972 Returns the smallest probable prime >=@code{x}.
1976 @subsection Combinatorial functions
1979 @item cl_I factorial (uintL n)
1980 @cindex @code{factorial ()}
1981 @code{n} must be a small integer >= 0. This function returns the factorial
1982 @code{n}! = @code{1*2*@dots{}*n}.
1984 @item cl_I doublefactorial (uintL n)
1985 @cindex @code{doublefactorial ()}
1986 @code{n} must be a small integer >= 0. This function returns the
1987 doublefactorial @code{n}!! = @code{1*3*@dots{}*n} or
1988 @code{n}!! = @code{2*4*@dots{}*n}, respectively.
1990 @item cl_I binomial (uintL n, uintL k)
1991 @cindex @code{binomial ()}
1992 @code{n} and @code{k} must be small integers >= 0. This function returns the
1993 binomial coefficient
1995 ${n \choose k} = {n! \over n! (n-k)!}$
1998 (@code{n} choose @code{k}) = @code{n}! / @code{k}! @code{(n-k)}!
2000 for 0 <= k <= n, 0 else.
2004 @section Functions on floating-point numbers
2006 Recall that a floating-point number consists of a sign @code{s}, an
2007 exponent @code{e} and a mantissa @code{m}. The value of the number is
2008 @code{(-1)^s * 2^e * m}.
2011 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
2012 defines the following operations.
2015 @item @var{type} scale_float (const @var{type}& x, sintC delta)
2016 @cindex @code{scale_float ()}
2017 @itemx @var{type} scale_float (const @var{type}& x, const cl_I& delta)
2018 Returns @code{x*2^delta}. This is more efficient than an explicit multiplication
2019 because it copies @code{x} and modifies the exponent.
2022 The following functions provide an abstract interface to the underlying
2023 representation of floating-point numbers.
2026 @item sintL float_exponent (const @var{type}& x)
2027 @cindex @code{float_exponent ()}
2028 Returns the exponent @code{e} of @code{x}.
2029 For @code{x = 0.0}, this is 0. For @code{x} non-zero, this is the unique
2030 integer with @code{2^(e-1) <= abs(x) < 2^e}.
2032 @item sintL float_radix (const @var{type}& x)
2033 @cindex @code{float_radix ()}
2034 Returns the base of the floating-point representation. This is always @code{2}.
2036 @item @var{type} float_sign (const @var{type}& x)
2037 @cindex @code{float_sign ()}
2038 Returns the sign @code{s} of @code{x} as a float. The value is 1 for
2039 @code{x} >= 0, -1 for @code{x} < 0.
2041 @item uintC float_digits (const @var{type}& x)
2042 @cindex @code{float_digits ()}
2043 Returns the number of mantissa bits in the floating-point representation
2044 of @code{x}, including the hidden bit. The value only depends on the type
2045 of @code{x}, not on its value.
2047 @item uintC float_precision (const @var{type}& x)
2048 @cindex @code{float_precision ()}
2049 Returns the number of significant mantissa bits in the floating-point
2050 representation of @code{x}. Since denormalized numbers are not supported,
2051 this is the same as @code{float_digits(x)} if @code{x} is non-zero, and
2055 The complete internal representation of a float is encoded in the type
2056 @cindex @code{decoded_float}
2057 @cindex @code{decoded_sfloat}
2058 @cindex @code{decoded_ffloat}
2059 @cindex @code{decoded_dfloat}
2060 @cindex @code{decoded_lfloat}
2061 @code{decoded_float} (or @code{decoded_sfloat}, @code{decoded_ffloat},
2062 @code{decoded_dfloat}, @code{decoded_lfloat}, respectively), defined by
2064 struct decoded_@var{type}float @{
2065 @var{type} mantissa; cl_I exponent; @var{type} sign;
2069 and returned by the function
2072 @item decoded_@var{type}float decode_float (const @var{type}& x)
2073 @cindex @code{decode_float ()}
2074 For @code{x} non-zero, this returns @code{(-1)^s}, @code{e}, @code{m} with
2075 @code{x = (-1)^s * 2^e * m} and @code{0.5 <= m < 1.0}. For @code{x} = 0,
2076 it returns @code{(-1)^s}=1, @code{e}=0, @code{m}=0.
2077 @code{e} is the same as returned by the function @code{float_exponent}.
2080 A complete decoding in terms of integers is provided as type
2081 @cindex @code{cl_idecoded_float}
2083 struct cl_idecoded_float @{
2084 cl_I mantissa; cl_I exponent; cl_I sign;
2087 by the following function:
2090 @item cl_idecoded_float integer_decode_float (const @var{type}& x)
2091 @cindex @code{integer_decode_float ()}
2092 For @code{x} non-zero, this returns @code{(-1)^s}, @code{e}, @code{m} with
2093 @code{x = (-1)^s * 2^e * m} and @code{m} an integer with @code{float_digits(x)}
2094 bits. For @code{x} = 0, it returns @code{(-1)^s}=1, @code{e}=0, @code{m}=0.
2095 WARNING: The exponent @code{e} is not the same as the one returned by
2096 the functions @code{decode_float} and @code{float_exponent}.
2099 Some other function, implemented only for class @code{cl_F}:
2102 @item cl_F float_sign (const cl_F& x, const cl_F& y)
2103 @cindex @code{float_sign ()}
2104 This returns a floating point number whose precision and absolute value
2105 is that of @code{y} and whose sign is that of @code{x}. If @code{x} is
2106 zero, it is treated as positive. Same for @code{y}.
2110 @section Conversion functions
2113 @subsection Conversion to floating-point numbers
2115 The type @code{float_format_t} describes a floating-point format.
2116 @cindex @code{float_format_t}
2119 @item float_format_t float_format (uintL n)
2120 @cindex @code{float_format ()}
2121 Returns the smallest float format which guarantees at least @code{n}
2122 decimal digits in the mantissa (after the decimal point).
2124 @item float_format_t float_format (const cl_F& x)
2125 Returns the floating point format of @code{x}.
2127 @item float_format_t default_float_format
2128 @cindex @code{default_float_format}
2129 Global variable: the default float format used when converting rational numbers
2133 To convert a real number to a float, each of the types
2134 @code{cl_R}, @code{cl_F}, @code{cl_I}, @code{cl_RA},
2135 @code{int}, @code{unsigned int}, @code{float}, @code{double}
2136 defines the following operations:
2139 @item cl_F cl_float (const @var{type}&x, float_format_t f)
2140 @cindex @code{cl_float ()}
2141 Returns @code{x} as a float of format @code{f}.
2142 @item cl_F cl_float (const @var{type}&x, const cl_F& y)
2143 Returns @code{x} in the float format of @code{y}.
2144 @item cl_F cl_float (const @var{type}&x)
2145 Returns @code{x} as a float of format @code{default_float_format} if
2146 it is an exact number, or @code{x} itself if it is already a float.
2149 Of course, converting a number to a float can lose precision.
2151 Every floating-point format has some characteristic numbers:
2154 @item cl_F most_positive_float (float_format_t f)
2155 @cindex @code{most_positive_float ()}
2156 Returns the largest (most positive) floating point number in float format @code{f}.
2158 @item cl_F most_negative_float (float_format_t f)
2159 @cindex @code{most_negative_float ()}
2160 Returns the smallest (most negative) floating point number in float format @code{f}.
2162 @item cl_F least_positive_float (float_format_t f)
2163 @cindex @code{least_positive_float ()}
2164 Returns the least positive floating point number (i.e. > 0 but closest to 0)
2165 in float format @code{f}.
2167 @item cl_F least_negative_float (float_format_t f)
2168 @cindex @code{least_negative_float ()}
2169 Returns the least negative floating point number (i.e. < 0 but closest to 0)
2170 in float format @code{f}.
2172 @item cl_F float_epsilon (float_format_t f)
2173 @cindex @code{float_epsilon ()}
2174 Returns the smallest floating point number e > 0 such that @code{1+e != 1}.
2176 @item cl_F float_negative_epsilon (float_format_t f)
2177 @cindex @code{float_negative_epsilon ()}
2178 Returns the smallest floating point number e > 0 such that @code{1-e != 1}.
2182 @subsection Conversion to rational numbers
2184 Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_F}
2185 defines the following operation:
2188 @item cl_RA rational (const @var{type}& x)
2189 @cindex @code{rational ()}
2190 Returns the value of @code{x} as an exact number. If @code{x} is already
2191 an exact number, this is @code{x}. If @code{x} is a floating-point number,
2192 the value is a rational number whose denominator is a power of 2.
2195 In order to convert back, say, @code{(cl_F)(cl_R)"1/3"} to @code{1/3}, there is
2199 @item cl_RA rationalize (const cl_R& x)
2200 @cindex @code{rationalize ()}
2201 If @code{x} is a floating-point number, it actually represents an interval
2202 of real numbers, and this function returns the rational number with
2203 smallest denominator (and smallest numerator, in magnitude)
2204 which lies in this interval.
2205 If @code{x} is already an exact number, this function returns @code{x}.
2208 If @code{x} is any float, one has
2212 @code{cl_float(rational(x),x) = x}
2214 @code{cl_float(rationalize(x),x) = x}
2218 @section Random number generators
2221 A random generator is a machine which produces (pseudo-)random numbers.
2222 The include file @code{<cln/random.h>} defines a class @code{random_state}
2223 which contains the state of a random generator. If you make a copy
2224 of the random number generator, the original one and the copy will produce
2225 the same sequence of random numbers.
2227 The following functions return (pseudo-)random numbers in different formats.
2228 Calling one of these modifies the state of the random number generator in
2229 a complicated but deterministic way.
2232 @cindex @code{random_state}
2233 @cindex @code{default_random_state}
2235 random_state default_random_state
2237 contains a default random number generator. It is used when the functions
2238 below are called without @code{random_state} argument.
2241 @item uint32 random32 (random_state& randomstate)
2242 @itemx uint32 random32 ()
2243 @cindex @code{random32 ()}
2244 Returns a random unsigned 32-bit number. All bits are equally random.
2246 @item cl_I random_I (random_state& randomstate, const cl_I& n)
2247 @itemx cl_I random_I (const cl_I& n)
2248 @cindex @code{random_I ()}
2249 @code{n} must be an integer > 0. This function returns a random integer @code{x}
2250 in the range @code{0 <= x < n}.
2252 @item cl_F random_F (random_state& randomstate, const cl_F& n)
2253 @itemx cl_F random_F (const cl_F& n)
2254 @cindex @code{random_F ()}
2255 @code{n} must be a float > 0. This function returns a random floating-point
2256 number of the same format as @code{n} in the range @code{0 <= x < n}.
2258 @item cl_R random_R (random_state& randomstate, const cl_R& n)
2259 @itemx cl_R random_R (const cl_R& n)
2260 @cindex @code{random_R ()}
2261 Behaves like @code{random_I} if @code{n} is an integer and like @code{random_F}
2262 if @code{n} is a float.
2266 @section Obfuscating operators
2267 @cindex modifying operators
2269 The modifying C/C++ operators @code{+=}, @code{-=}, @code{*=}, @code{/=},
2270 @code{&=}, @code{|=}, @code{^=}, @code{<<=}, @code{>>=}
2271 are not available by default because their
2272 use tends to make programs unreadable. It is trivial to get away without
2273 them. However, if you feel that you absolutely need these operators
2274 to get happy, then add
2276 #define WANT_OBFUSCATING_OPERATORS
2278 @cindex @code{WANT_OBFUSCATING_OPERATORS}
2279 to the beginning of your source files, before the inclusion of any CLN
2280 include files. This flag will enable the following operators:
2282 For the classes @code{cl_N}, @code{cl_R}, @code{cl_RA},
2283 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}:
2286 @item @var{type}& operator += (@var{type}&, const @var{type}&)
2287 @cindex @code{operator += ()}
2288 @itemx @var{type}& operator -= (@var{type}&, const @var{type}&)
2289 @cindex @code{operator -= ()}
2290 @itemx @var{type}& operator *= (@var{type}&, const @var{type}&)
2291 @cindex @code{operator *= ()}
2292 @itemx @var{type}& operator /= (@var{type}&, const @var{type}&)
2293 @cindex @code{operator /= ()}
2296 For the class @code{cl_I}:
2299 @item @var{type}& operator += (@var{type}&, const @var{type}&)
2300 @itemx @var{type}& operator -= (@var{type}&, const @var{type}&)
2301 @itemx @var{type}& operator *= (@var{type}&, const @var{type}&)
2302 @itemx @var{type}& operator &= (@var{type}&, const @var{type}&)
2303 @cindex @code{operator &= ()}
2304 @itemx @var{type}& operator |= (@var{type}&, const @var{type}&)
2305 @cindex @code{operator |= ()}
2306 @itemx @var{type}& operator ^= (@var{type}&, const @var{type}&)
2307 @cindex @code{operator ^= ()}
2308 @itemx @var{type}& operator <<= (@var{type}&, const @var{type}&)
2309 @cindex @code{operator <<= ()}
2310 @itemx @var{type}& operator >>= (@var{type}&, const @var{type}&)
2311 @cindex @code{operator >>= ()}
2314 For the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
2315 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}:
2318 @item @var{type}& operator ++ (@var{type}& x)
2319 @cindex @code{operator ++ ()}
2320 The prefix operator @code{++x}.
2322 @item void operator ++ (@var{type}& x, int)
2323 The postfix operator @code{x++}.
2325 @item @var{type}& operator -- (@var{type}& x)
2326 @cindex @code{operator -- ()}
2327 The prefix operator @code{--x}.
2329 @item void operator -- (@var{type}& x, int)
2330 The postfix operator @code{x--}.
2333 Note that by using these obfuscating operators, you wouldn't gain efficiency:
2334 In CLN @samp{x += y;} is exactly the same as @samp{x = x+y;}, not more
2338 @chapter Input/Output
2339 @cindex Input/Output
2341 @section Internal and printed representation
2342 @cindex representation
2344 All computations deal with the internal representations of the numbers.
2346 Every number has an external representation as a sequence of ASCII characters.
2347 Several external representations may denote the same number, for example,
2348 "20.0" and "20.000".
2350 Converting an internal to an external representation is called ``printing'',
2352 converting an external to an internal representation is called ``reading''.
2354 In CLN, it is always true that conversion of an internal to an external
2355 representation and then back to an internal representation will yield the
2356 same internal representation. Symbolically: @code{read(print(x)) == x}.
2357 This is called ``print-read consistency''.
2359 Different types of numbers have different external representations (case
2364 External representation: @var{sign}@{@var{digit}@}+. The reader also accepts the
2365 Common Lisp syntaxes @var{sign}@{@var{digit}@}+@code{.} with a trailing dot
2366 for decimal integers
2367 and the @code{#@var{n}R}, @code{#b}, @code{#o}, @code{#x} prefixes.
2369 @item Rational numbers
2370 External representation: @var{sign}@{@var{digit}@}+@code{/}@{@var{digit}@}+.
2371 The @code{#@var{n}R}, @code{#b}, @code{#o}, @code{#x} prefixes are allowed
2374 @item Floating-point numbers
2375 External representation: @var{sign}@{@var{digit}@}*@var{exponent} or
2376 @var{sign}@{@var{digit}@}*@code{.}@{@var{digit}@}*@var{exponent} or
2377 @var{sign}@{@var{digit}@}*@code{.}@{@var{digit}@}+. A precision specifier
2378 of the form _@var{prec} may be appended. There must be at least
2379 one digit in the non-exponent part. The exponent has the syntax
2380 @var{expmarker} @var{expsign} @{@var{digit}@}+.
2381 The exponent marker is
2385 @samp{s} for short-floats,
2387 @samp{f} for single-floats,
2389 @samp{d} for double-floats,
2391 @samp{L} for long-floats,
2394 or @samp{e}, which denotes a default float format. The precision specifying
2395 suffix has the syntax _@var{prec} where @var{prec} denotes the number of
2396 valid mantissa digits (in decimal, excluding leading zeroes), cf. also
2397 function @samp{float_format}.
2399 @item Complex numbers
2400 External representation:
2403 In algebraic notation: @code{@var{realpart}+@var{imagpart}i}. Of course,
2404 if @var{imagpart} is negative, its printed representation begins with
2405 a @samp{-}, and the @samp{+} between @var{realpart} and @var{imagpart}
2406 may be omitted. Note that this notation cannot be used when the @var{imagpart}
2407 is rational and the rational number's base is >18, because the @samp{i}
2408 is then read as a digit.
2410 In Common Lisp notation: @code{#C(@var{realpart} @var{imagpart})}.
2415 @section Input functions
2417 Including @code{<cln/io.h>} defines a number of simple input functions
2418 that read from @code{std::istream&}:
2421 @item int freadchar (std::istream& stream)
2422 Reads a character from @code{stream}. Returns @code{cl_EOF} (not a @samp{char}!)
2423 if the end of stream was encountered or an error occurred.
2425 @item int funreadchar (std::istream& stream, int c)
2426 Puts back @code{c} onto @code{stream}. @code{c} must be the result of the
2427 last @code{freadchar} operation on @code{stream}.
2430 Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
2431 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
2432 defines, in @code{<cln/@var{type}_io.h>}, the following input function:
2435 @item std::istream& operator>> (std::istream& stream, @var{type}& result)
2436 Reads a number from @code{stream} and stores it in the @code{result}.
2439 The most flexible input functions, defined in @code{<cln/@var{type}_io.h>},
2443 @item cl_N read_complex (std::istream& stream, const cl_read_flags& flags)
2444 @itemx cl_R read_real (std::istream& stream, const cl_read_flags& flags)
2445 @itemx cl_F read_float (std::istream& stream, const cl_read_flags& flags)
2446 @itemx cl_RA read_rational (std::istream& stream, const cl_read_flags& flags)
2447 @itemx cl_I read_integer (std::istream& stream, const cl_read_flags& flags)
2448 Reads a number from @code{stream}. The @code{flags} are parameters which
2449 affect the input syntax. Whitespace before the number is silently skipped.
2451 @item cl_N read_complex (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
2452 @itemx cl_R read_real (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
2453 @itemx cl_F read_float (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
2454 @itemx cl_RA read_rational (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
2455 @itemx cl_I read_integer (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
2456 Reads a number from a string in memory. The @code{flags} are parameters which
2457 affect the input syntax. The string starts at @code{string} and ends at
2458 @code{string_limit} (exclusive limit). @code{string_limit} may also be
2459 @code{NULL}, denoting the entire string, i.e. equivalent to
2460 @code{string_limit = string + strlen(string)}. If @code{end_of_parse} is
2461 @code{NULL}, the string in memory must contain exactly one number and nothing
2462 more, else a fatal error will be signalled. If @code{end_of_parse}
2463 is not @code{NULL}, @code{*end_of_parse} will be assigned a pointer past
2464 the last parsed character (i.e. @code{string_limit} if nothing came after
2465 the number). Whitespace is not allowed.
2468 The structure @code{cl_read_flags} contains the following fields:
2471 @item cl_read_syntax_t syntax
2472 The possible results of the read operation. Possible values are
2473 @code{syntax_number}, @code{syntax_real}, @code{syntax_rational},
2474 @code{syntax_integer}, @code{syntax_float}, @code{syntax_sfloat},
2475 @code{syntax_ffloat}, @code{syntax_dfloat}, @code{syntax_lfloat}.
2477 @item cl_read_lsyntax_t lsyntax
2478 Specifies the language-dependent syntax variant for the read operation.
2482 @item lsyntax_standard
2483 accept standard algebraic notation only, no complex numbers,
2484 @item lsyntax_algebraic
2485 accept the algebraic notation @code{@var{x}+@var{y}i} for complex numbers,
2486 @item lsyntax_commonlisp
2487 accept the @code{#b}, @code{#o}, @code{#x} syntaxes for binary, octal,
2488 hexadecimal numbers,
2489 @code{#@var{base}R} for rational numbers in a given base,
2490 @code{#c(@var{realpart} @var{imagpart})} for complex numbers,
2492 accept all of these extensions.
2495 @item unsigned int rational_base
2496 The base in which rational numbers are read.
2498 @item float_format_t float_flags.default_float_format
2499 The float format used when reading floats with exponent marker @samp{e}.
2501 @item float_format_t float_flags.default_lfloat_format
2502 The float format used when reading floats with exponent marker @samp{l}.
2504 @item cl_boolean float_flags.mantissa_dependent_float_format
2505 When this flag is true, floats specified with more digits than corresponding
2506 to the exponent marker they contain, but without @var{_nnn} suffix, will get a
2507 precision corresponding to their number of significant digits.
2511 @section Output functions
2513 Including @code{<cln/io.h>} defines a number of simple output functions
2514 that write to @code{std::ostream&}:
2517 @item void fprintchar (std::ostream& stream, char c)
2518 Prints the character @code{x} literally on the @code{stream}.
2520 @item void fprint (std::ostream& stream, const char * string)
2521 Prints the @code{string} literally on the @code{stream}.
2523 @item void fprintdecimal (std::ostream& stream, int x)
2524 @itemx void fprintdecimal (std::ostream& stream, const cl_I& x)
2525 Prints the integer @code{x} in decimal on the @code{stream}.
2527 @item void fprintbinary (std::ostream& stream, const cl_I& x)
2528 Prints the integer @code{x} in binary (base 2, without prefix)
2529 on the @code{stream}.
2531 @item void fprintoctal (std::ostream& stream, const cl_I& x)
2532 Prints the integer @code{x} in octal (base 8, without prefix)
2533 on the @code{stream}.
2535 @item void fprinthexadecimal (std::ostream& stream, const cl_I& x)
2536 Prints the integer @code{x} in hexadecimal (base 16, without prefix)
2537 on the @code{stream}.
2540 Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
2541 @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
2542 defines, in @code{<cln/@var{type}_io.h>}, the following output functions:
2545 @item void fprint (std::ostream& stream, const @var{type}& x)
2546 @itemx std::ostream& operator<< (std::ostream& stream, const @var{type}& x)
2547 Prints the number @code{x} on the @code{stream}. The output may depend
2548 on the global printer settings in the variable @code{default_print_flags}.
2549 The @code{ostream} flags and settings (flags, width and locale) are
2553 The most flexible output function, defined in @code{<cln/@var{type}_io.h>},
2556 void print_complex (std::ostream& stream, const cl_print_flags& flags,
2558 void print_real (std::ostream& stream, const cl_print_flags& flags,
2560 void print_float (std::ostream& stream, const cl_print_flags& flags,
2562 void print_rational (std::ostream& stream, const cl_print_flags& flags,
2564 void print_integer (std::ostream& stream, const cl_print_flags& flags,
2567 Prints the number @code{x} on the @code{stream}. The @code{flags} are
2568 parameters which affect the output.
2570 The structure type @code{cl_print_flags} contains the following fields:
2573 @item unsigned int rational_base
2574 The base in which rational numbers are printed. Default is @code{10}.
2576 @item cl_boolean rational_readably
2577 If this flag is true, rational numbers are printed with radix specifiers in
2578 Common Lisp syntax (@code{#@var{n}R} or @code{#b} or @code{#o} or @code{#x}
2579 prefixes, trailing dot). Default is false.
2581 @item cl_boolean float_readably
2582 If this flag is true, type specific exponent markers have precedence over 'E'.
2585 @item float_format_t default_float_format
2586 Floating point numbers of this format will be printed using the 'E' exponent
2587 marker. Default is @code{float_format_ffloat}.
2589 @item cl_boolean complex_readably
2590 If this flag is true, complex numbers will be printed using the Common Lisp
2591 syntax @code{#C(@var{realpart} @var{imagpart})}. Default is false.
2593 @item cl_string univpoly_varname
2594 Univariate polynomials with no explicit indeterminate name will be printed
2595 using this variable name. Default is @code{"x"}.
2598 The global variable @code{default_print_flags} contains the default values,
2599 used by the function @code{fprint}.
2604 CLN has a class of abstract rings.
2612 Rings can be compared for equality:
2615 @item bool operator== (const cl_ring&, const cl_ring&)
2616 @itemx bool operator!= (const cl_ring&, const cl_ring&)
2617 These compare two rings for equality.
2620 Given a ring @code{R}, the following members can be used.
2623 @item void R->fprint (std::ostream& stream, const cl_ring_element& x)
2624 @cindex @code{fprint ()}
2625 @itemx cl_boolean R->equal (const cl_ring_element& x, const cl_ring_element& y)
2626 @cindex @code{equal ()}
2627 @itemx cl_ring_element R->zero ()
2628 @cindex @code{zero ()}
2629 @itemx cl_boolean R->zerop (const cl_ring_element& x)
2630 @cindex @code{zerop ()}
2631 @itemx cl_ring_element R->plus (const cl_ring_element& x, const cl_ring_element& y)
2632 @cindex @code{plus ()}
2633 @itemx cl_ring_element R->minus (const cl_ring_element& x, const cl_ring_element& y)
2634 @cindex @code{minus ()}
2635 @itemx cl_ring_element R->uminus (const cl_ring_element& x)
2636 @cindex @code{uminus ()}
2637 @itemx cl_ring_element R->one ()
2638 @cindex @code{one ()}
2639 @itemx cl_ring_element R->canonhom (const cl_I& x)
2640 @cindex @code{canonhom ()}
2641 @itemx cl_ring_element R->mul (const cl_ring_element& x, const cl_ring_element& y)
2642 @cindex @code{mul ()}
2643 @itemx cl_ring_element R->square (const cl_ring_element& x)
2644 @cindex @code{square ()}
2645 @itemx cl_ring_element R->expt_pos (const cl_ring_element& x, const cl_I& y)
2646 @cindex @code{expt_pos ()}
2649 The following rings are built-in.
2652 @item cl_null_ring cl_0_ring
2653 The null ring, containing only zero.
2655 @item cl_complex_ring cl_C_ring
2656 The ring of complex numbers. This corresponds to the type @code{cl_N}.
2658 @item cl_real_ring cl_R_ring
2659 The ring of real numbers. This corresponds to the type @code{cl_R}.
2661 @item cl_rational_ring cl_RA_ring
2662 The ring of rational numbers. This corresponds to the type @code{cl_RA}.
2664 @item cl_integer_ring cl_I_ring
2665 The ring of integers. This corresponds to the type @code{cl_I}.
2668 Type tests can be performed for any of @code{cl_C_ring}, @code{cl_R_ring},
2669 @code{cl_RA_ring}, @code{cl_I_ring}:
2672 @item cl_boolean instanceof (const cl_number& x, const cl_number_ring& R)
2673 @cindex @code{instanceof ()}
2674 Tests whether the given number is an element of the number ring R.
2678 @chapter Modular integers
2679 @cindex modular integer
2681 @section Modular integer rings
2684 CLN implements modular integers, i.e. integers modulo a fixed integer N.
2685 The modulus is explicitly part of every modular integer. CLN doesn't
2686 allow you to (accidentally) mix elements of different modular rings,
2687 e.g. @code{(3 mod 4) + (2 mod 5)} will result in a runtime error.
2688 (Ideally one would imagine a generic data type @code{cl_MI(N)}, but C++
2689 doesn't have generic types. So one has to live with runtime checks.)
2691 The class of modular integer rings is
2699 Modular integer ring
2703 @cindex @code{cl_modint_ring}
2705 and the class of all modular integers (elements of modular integer rings) is
2713 Modular integer rings are constructed using the function
2716 @item cl_modint_ring find_modint_ring (const cl_I& N)
2717 @cindex @code{find_modint_ring ()}
2718 This function returns the modular ring @samp{Z/NZ}. It takes care
2719 of finding out about special cases of @code{N}, like powers of two
2720 and odd numbers for which Montgomery multiplication will be a win,
2721 @cindex Montgomery multiplication
2722 and precomputes any necessary auxiliary data for computing modulo @code{N}.
2723 There is a cache table of rings, indexed by @code{N} (or, more precisely,
2724 by @code{abs(N)}). This ensures that the precomputation costs are reduced
2728 Modular integer rings can be compared for equality:
2731 @item bool operator== (const cl_modint_ring&, const cl_modint_ring&)
2732 @cindex @code{operator == ()}
2733 @itemx bool operator!= (const cl_modint_ring&, const cl_modint_ring&)
2734 @cindex @code{operator != ()}
2735 These compare two modular integer rings for equality. Two different calls
2736 to @code{find_modint_ring} with the same argument necessarily return the
2737 same ring because it is memoized in the cache table.
2740 @section Functions on modular integers
2742 Given a modular integer ring @code{R}, the following members can be used.
2745 @item cl_I R->modulus
2746 @cindex @code{modulus}
2747 This is the ring's modulus, normalized to be nonnegative: @code{abs(N)}.
2749 @item cl_MI R->zero()
2750 @cindex @code{zero ()}
2751 This returns @code{0 mod N}.
2753 @item cl_MI R->one()
2754 @cindex @code{one ()}
2755 This returns @code{1 mod N}.
2757 @item cl_MI R->canonhom (const cl_I& x)
2758 @cindex @code{canonhom ()}
2759 This returns @code{x mod N}.
2761 @item cl_I R->retract (const cl_MI& x)
2762 @cindex @code{retract ()}
2763 This is a partial inverse function to @code{R->canonhom}. It returns the
2764 standard representative (@code{>=0}, @code{<N}) of @code{x}.
2766 @item cl_MI R->random(random_state& randomstate)
2767 @itemx cl_MI R->random()
2768 @cindex @code{random ()}
2769 This returns a random integer modulo @code{N}.
2772 The following operations are defined on modular integers.
2775 @item cl_modint_ring x.ring ()
2776 @cindex @code{ring ()}
2777 Returns the ring to which the modular integer @code{x} belongs.
2779 @item cl_MI operator+ (const cl_MI&, const cl_MI&)
2780 @cindex @code{operator + ()}
2781 Returns the sum of two modular integers. One of the arguments may also
2784 @item cl_MI operator- (const cl_MI&, const cl_MI&)
2785 @cindex @code{operator - ()}
2786 Returns the difference of two modular integers. One of the arguments may also
2789 @item cl_MI operator- (const cl_MI&)
2790 Returns the negative of a modular integer.
2792 @item cl_MI operator* (const cl_MI&, const cl_MI&)
2793 @cindex @code{operator * ()}
2794 Returns the product of two modular integers. One of the arguments may also
2797 @item cl_MI square (const cl_MI&)
2798 @cindex @code{square ()}
2799 Returns the square of a modular integer.
2801 @item cl_MI recip (const cl_MI& x)
2802 @cindex @code{recip ()}
2803 Returns the reciprocal @code{x^-1} of a modular integer @code{x}. @code{x}
2804 must be coprime to the modulus, otherwise an error message is issued.
2806 @item cl_MI div (const cl_MI& x, const cl_MI& y)
2807 @cindex @code{div ()}
2808 Returns the quotient @code{x*y^-1} of two modular integers @code{x}, @code{y}.
2809 @code{y} must be coprime to the modulus, otherwise an error message is issued.
2811 @item cl_MI expt_pos (const cl_MI& x, const cl_I& y)
2812 @cindex @code{expt_pos ()}
2813 @code{y} must be > 0. Returns @code{x^y}.
2815 @item cl_MI expt (const cl_MI& x, const cl_I& y)
2816 @cindex @code{expt ()}
2817 Returns @code{x^y}. If @code{y} is negative, @code{x} must be coprime to the
2818 modulus, else an error message is issued.
2820 @item cl_MI operator<< (const cl_MI& x, const cl_I& y)
2821 @cindex @code{operator << ()}
2822 Returns @code{x*2^y}.
2824 @item cl_MI operator>> (const cl_MI& x, const cl_I& y)
2825 @cindex @code{operator >> ()}
2826 Returns @code{x*2^-y}. When @code{y} is positive, the modulus must be odd,
2827 or an error message is issued.
2829 @item bool operator== (const cl_MI&, const cl_MI&)
2830 @cindex @code{operator == ()}
2831 @itemx bool operator!= (const cl_MI&, const cl_MI&)
2832 @cindex @code{operator != ()}
2833 Compares two modular integers, belonging to the same modular integer ring,
2836 @item cl_boolean zerop (const cl_MI& x)
2837 @cindex @code{zerop ()}
2838 Returns true if @code{x} is @code{0 mod N}.
2841 The following output functions are defined (see also the chapter on
2845 @item void fprint (std::ostream& stream, const cl_MI& x)
2846 @cindex @code{fprint ()}
2847 @itemx std::ostream& operator<< (std::ostream& stream, const cl_MI& x)
2848 @cindex @code{operator << ()}
2849 Prints the modular integer @code{x} on the @code{stream}. The output may depend
2850 on the global printer settings in the variable @code{default_print_flags}.
2854 @chapter Symbolic data types
2855 @cindex symbolic type
2857 CLN implements two symbolic (non-numeric) data types: strings and symbols.
2861 @cindex @code{cl_string}
2871 implements immutable strings.
2873 Strings are constructed through the following constructors:
2876 @item cl_string (const char * s)
2877 Returns an immutable copy of the (zero-terminated) C string @code{s}.
2879 @item cl_string (const char * ptr, unsigned long len)
2880 Returns an immutable copy of the @code{len} characters at
2881 @code{ptr[0]}, @dots{}, @code{ptr[len-1]}. NUL characters are allowed.
2884 The following functions are available on strings:
2888 Assignment from @code{cl_string} and @code{const char *}.
2891 @cindex @code{length ()}
2893 @cindex @code{strlen ()}
2894 Returns the length of the string @code{s}.
2897 @cindex @code{operator [] ()}
2898 Returns the @code{i}th character of the string @code{s}.
2899 @code{i} must be in the range @code{0 <= i < s.length()}.
2901 @item bool equal (const cl_string& s1, const cl_string& s2)
2902 @cindex @code{equal ()}
2903 Compares two strings for equality. One of the arguments may also be a
2904 plain @code{const char *}.
2909 @cindex @code{cl_symbol}
2911 Symbols are uniquified strings: all symbols with the same name are shared.
2912 This means that comparison of two symbols is fast (effectively just a pointer
2913 comparison), whereas comparison of two strings must in the worst case walk
2914 both strings until their end.
2915 Symbols are used, for example, as tags for properties, as names of variables
2916 in polynomial rings, etc.
2918 Symbols are constructed through the following constructor:
2921 @item cl_symbol (const cl_string& s)
2922 Looks up or creates a new symbol with a given name.
2925 The following operations are available on symbols:
2928 @item cl_string (const cl_symbol& sym)
2929 Conversion to @code{cl_string}: Returns the string which names the symbol
2932 @item bool equal (const cl_symbol& sym1, const cl_symbol& sym2)
2933 @cindex @code{equal ()}
2934 Compares two symbols for equality. This is very fast.
2938 @chapter Univariate polynomials
2940 @cindex univariate polynomial
2942 @section Univariate polynomial rings
2944 CLN implements univariate polynomials (polynomials in one variable) over an
2945 arbitrary ring. The indeterminate variable may be either unnamed (and will be
2946 printed according to @code{default_print_flags.univpoly_varname}, which
2947 defaults to @samp{x}) or carry a given name. The base ring and the
2948 indeterminate are explicitly part of every polynomial. CLN doesn't allow you to
2949 (accidentally) mix elements of different polynomial rings, e.g.
2950 @code{(a^2+1) * (b^3-1)} will result in a runtime error. (Ideally this should
2951 return a multivariate polynomial, but they are not yet implemented in CLN.)
2953 The classes of univariate polynomial rings are
2961 Univariate polynomial ring
2965 +----------------+-------------------+
2967 Complex polynomial ring | Modular integer polynomial ring
2968 cl_univpoly_complex_ring | cl_univpoly_modint_ring
2969 <cln/univpoly_complex.h> | <cln/univpoly_modint.h>
2973 Real polynomial ring |
2974 cl_univpoly_real_ring |
2975 <cln/univpoly_real.h> |
2979 Rational polynomial ring |
2980 cl_univpoly_rational_ring |
2981 <cln/univpoly_rational.h> |
2985 Integer polynomial ring
2986 cl_univpoly_integer_ring
2987 <cln/univpoly_integer.h>
2990 and the corresponding classes of univariate polynomials are
2993 Univariate polynomial
2997 +----------------+-------------------+
2999 Complex polynomial | Modular integer polynomial
3001 <cln/univpoly_complex.h> | <cln/univpoly_modint.h>
3007 <cln/univpoly_real.h> |
3011 Rational polynomial |
3013 <cln/univpoly_rational.h> |
3019 <cln/univpoly_integer.h>
3022 Univariate polynomial rings are constructed using the functions
3025 @item cl_univpoly_ring find_univpoly_ring (const cl_ring& R)
3026 @itemx cl_univpoly_ring find_univpoly_ring (const cl_ring& R, const cl_symbol& varname)
3027 This function returns the polynomial ring @samp{R[X]}, unnamed or named.
3028 @code{R} may be an arbitrary ring. This function takes care of finding out
3029 about special cases of @code{R}, such as the rings of complex numbers,
3030 real numbers, rational numbers, integers, or modular integer rings.
3031 There is a cache table of rings, indexed by @code{R} and @code{varname}.
3032 This ensures that two calls of this function with the same arguments will
3033 return the same polynomial ring.
3035 @itemx cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring& R)
3036 @cindex @code{find_univpoly_ring ()}
3037 @itemx cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring& R, const cl_symbol& varname)
3038 @itemx cl_univpoly_real_ring find_univpoly_ring (const cl_real_ring& R)
3039 @itemx cl_univpoly_real_ring find_univpoly_ring (const cl_real_ring& R, const cl_symbol& varname)
3040 @itemx cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& R)
3041 @itemx cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& R, const cl_symbol& varname)
3042 @itemx cl_univpoly_integer_ring find_univpoly_ring (const cl_integer_ring& R)
3043 @itemx cl_univpoly_integer_ring find_univpoly_ring (const cl_integer_ring& R, const cl_symbol& varname)
3044 @itemx cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& R)
3045 @itemx cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& R, const cl_symbol& varname)
3046 These functions are equivalent to the general @code{find_univpoly_ring},
3047 only the return type is more specific, according to the base ring's type.
3050 @section Functions on univariate polynomials
3052 Given a univariate polynomial ring @code{R}, the following members can be used.
3055 @item cl_ring R->basering()
3056 @cindex @code{basering ()}
3057 This returns the base ring, as passed to @samp{find_univpoly_ring}.
3059 @item cl_UP R->zero()
3060 @cindex @code{zero ()}
3061 This returns @code{0 in R}, a polynomial of degree -1.
3063 @item cl_UP R->one()
3064 @cindex @code{one ()}
3065 This returns @code{1 in R}, a polynomial of degree == 0.
3067 @item cl_UP R->canonhom (const cl_I& x)
3068 @cindex @code{canonhom ()}
3069 This returns @code{x in R}, a polynomial of degree <= 0.
3071 @item cl_UP R->monomial (const cl_ring_element& x, uintL e)
3072 @cindex @code{monomial ()}
3073 This returns a sparse polynomial: @code{x * X^e}, where @code{X} is the
3076 @item cl_UP R->create (sintL degree)
3077 @cindex @code{create ()}
3078 Creates a new polynomial with a given degree. The zero polynomial has degree
3079 @code{-1}. After creating the polynomial, you should put in the coefficients,
3080 using the @code{set_coeff} member function, and then call the @code{finalize}
3084 The following are the only destructive operations on univariate polynomials.
3087 @item void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)
3088 @cindex @code{set_coeff ()}
3089 This changes the coefficient of @code{X^index} in @code{x} to be @code{y}.
3090 After changing a polynomial and before applying any "normal" operation on it,
3091 you should call its @code{finalize} member function.
3093 @item void finalize (cl_UP& x)
3094 @cindex @code{finalize ()}
3095 This function marks the endpoint of destructive modifications of a polynomial.
3096 It normalizes the internal representation so that subsequent computations have
3097 less overhead. Doing normal computations on unnormalized polynomials may
3098 produce wrong results or crash the program.
3101 The following operations are defined on univariate polynomials.
3104 @item cl_univpoly_ring x.ring ()
3105 @cindex @code{ring ()}
3106 Returns the ring to which the univariate polynomial @code{x} belongs.
3108 @item cl_UP operator+ (const cl_UP&, const cl_UP&)
3109 @cindex @code{operator + ()}
3110 Returns the sum of two univariate polynomials.
3112 @item cl_UP operator- (const cl_UP&, const cl_UP&)
3113 @cindex @code{operator - ()}
3114 Returns the difference of two univariate polynomials.
3116 @item cl_UP operator- (const cl_UP&)
3117 Returns the negative of a univariate polynomial.
3119 @item cl_UP operator* (const cl_UP&, const cl_UP&)
3120 @cindex @code{operator * ()}
3121 Returns the product of two univariate polynomials. One of the arguments may
3122 also be a plain integer or an element of the base ring.
3124 @item cl_UP square (const cl_UP&)
3125 @cindex @code{square ()}
3126 Returns the square of a univariate polynomial.
3128 @item cl_UP expt_pos (const cl_UP& x, const cl_I& y)
3129 @cindex @code{expt_pos ()}
3130 @code{y} must be > 0. Returns @code{x^y}.
3132 @item bool operator== (const cl_UP&, const cl_UP&)
3133 @cindex @code{operator == ()}
3134 @itemx bool operator!= (const cl_UP&, const cl_UP&)
3135 @cindex @code{operator != ()}
3136 Compares two univariate polynomials, belonging to the same univariate
3137 polynomial ring, for equality.
3139 @item cl_boolean zerop (const cl_UP& x)
3140 @cindex @code{zerop ()}
3141 Returns true if @code{x} is @code{0 in R}.
3143 @item sintL degree (const cl_UP& x)
3144 @cindex @code{degree ()}
3145 Returns the degree of the polynomial. The zero polynomial has degree @code{-1}.
3147 @item sintL ldegree (const cl_UP& x)
3148 @cindex @code{degree ()}
3149 Returns the low degree of the polynomial. This is the degree of the first
3150 non-vanishing polynomial coefficient. The zero polynomial has ldegree @code{-1}.
3152 @item cl_ring_element coeff (const cl_UP& x, uintL index)
3153 @cindex @code{coeff ()}
3154 Returns the coefficient of @code{X^index} in the polynomial @code{x}.
3156 @item cl_ring_element x (const cl_ring_element& y)
3157 @cindex @code{operator () ()}
3158 Evaluation: If @code{x} is a polynomial and @code{y} belongs to the base ring,
3159 then @samp{x(y)} returns the value of the substitution of @code{y} into
3162 @item cl_UP deriv (const cl_UP& x)
3163 @cindex @code{deriv ()}
3164 Returns the derivative of the polynomial @code{x} with respect to the
3165 indeterminate @code{X}.
3168 The following output functions are defined (see also the chapter on
3172 @item void fprint (std::ostream& stream, const cl_UP& x)
3173 @cindex @code{fprint ()}
3174 @itemx std::ostream& operator<< (std::ostream& stream, const cl_UP& x)
3175 @cindex @code{operator << ()}
3176 Prints the univariate polynomial @code{x} on the @code{stream}. The output may
3177 depend on the global printer settings in the variable
3178 @code{default_print_flags}.
3181 @section Special polynomials
3183 The following functions return special polynomials.
3186 @item cl_UP_I tschebychev (sintL n)
3187 @cindex @code{tschebychev ()}
3188 @cindex Chebyshev polynomial
3189 Returns the n-th Chebyshev polynomial (n >= 0).
3191 @item cl_UP_I hermite (sintL n)
3192 @cindex @code{hermite ()}
3193 @cindex Hermite polynomial
3194 Returns the n-th Hermite polynomial (n >= 0).
3196 @item cl_UP_RA legendre (sintL n)
3197 @cindex @code{legendre ()}
3198 @cindex Legende polynomial
3199 Returns the n-th Legendre polynomial (n >= 0).
3201 @item cl_UP_I laguerre (sintL n)
3202 @cindex @code{laguerre ()}
3203 @cindex Laguerre polynomial
3204 Returns the n-th Laguerre polynomial (n >= 0).
3207 Information how to derive the differential equation satisfied by each
3208 of these polynomials from their definition can be found in the
3209 @code{doc/polynomial/} directory.
3217 Using C++ as an implementation language provides
3221 Efficiency: It compiles to machine code.
3225 Portability: It runs on all platforms supporting a C++ compiler. Because
3226 of the availability of GNU C++, this includes all currently used 32-bit and
3227 64-bit platforms, independently of the quality of the vendor's C++ compiler.
3230 Type safety: The C++ compilers knows about the number types and complains if,
3231 for example, you try to assign a float to an integer variable. However,
3232 a drawback is that C++ doesn't know about generic types, hence a restriction
3233 like that @code{operator+ (const cl_MI&, const cl_MI&)} requires that both
3234 arguments belong to the same modular ring cannot be expressed as a compile-time
3238 Algebraic syntax: The elementary operations @code{+}, @code{-}, @code{*},
3239 @code{=}, @code{==}, ... can be used in infix notation, which is more
3240 convenient than Lisp notation @samp{(+ x y)} or C notation @samp{add(x,y,&z)}.
3243 With these language features, there is no need for two separate languages,
3244 one for the implementation of the library and one in which the library's users
3245 can program. This means that a prototype implementation of an algorithm
3246 can be integrated into the library immediately after it has been tested and
3247 debugged. No need to rewrite it in a low-level language after having prototyped
3248 in a high-level language.
3251 @section Memory efficiency
3253 In order to save memory allocations, CLN implements:
3257 Object sharing: An operation like @code{x+0} returns @code{x} without copying
3260 @cindex garbage collection
3261 @cindex reference counting
3262 Garbage collection: A reference counting mechanism makes sure that any
3263 number object's storage is freed immediately when the last reference to the
3266 @cindex immediate numbers
3267 Small integers are represented as immediate values instead of pointers
3268 to heap allocated storage. This means that integers @code{> -2^29},
3269 @code{< 2^29} don't consume heap memory, unless they were explicitly allocated
3274 @section Speed efficiency
3276 Speed efficiency is obtained by the combination of the following tricks
3281 Small integers, being represented as immediate values, don't require
3282 memory access, just a couple of instructions for each elementary operation.
3284 The kernel of CLN has been written in assembly language for some CPUs
3285 (@code{i386}, @code{m68k}, @code{sparc}, @code{mips}, @code{arm}).
3287 On all CPUs, CLN may be configured to use the superefficient low-level
3288 routines from GNU GMP version 3.
3290 For large numbers, CLN uses, instead of the standard @code{O(N^2)}
3291 algorithm, the Karatsuba multiplication, which is an
3302 For very large numbers (more than 12000 decimal digits), CLN uses
3304 Sch{@"o}nhage-Strassen
3305 @cindex Sch{@"o}nhage-Strassen multiplication
3309 @cindex Schnhage-Strassen multiplication
3311 multiplication, which is an asymptotically optimal multiplication
3314 These fast multiplication algorithms also give improvements in the speed
3315 of division and radix conversion.
3319 @section Garbage collection
3320 @cindex garbage collection
3322 All the number classes are reference count classes: They only contain a pointer
3323 to an object in the heap. Upon construction, assignment and destruction of
3324 number objects, only the objects' reference count are manipulated.
3326 Memory occupied by number objects are automatically reclaimed as soon as
3327 their reference count drops to zero.
3329 For number rings, another strategy is implemented: There is a cache of,
3330 for example, the modular integer rings. A modular integer ring is destroyed
3331 only if its reference count dropped to zero and the cache is about to be
3332 resized. The effect of this strategy is that recently used rings remain
3333 cached, whereas undue memory consumption through cached rings is avoided.
3336 @chapter Using the library
3338 For the following discussion, we will assume that you have installed
3339 the CLN source in @code{$CLN_DIR} and built it in @code{$CLN_TARGETDIR}.
3340 For example, for me it's @code{CLN_DIR="$HOME/cln"} and
3341 @code{CLN_TARGETDIR="$HOME/cln/linuxelf"}. You might define these as
3342 environment variables, or directly substitute the appropriate values.
3345 @section Compiler options
3346 @cindex compiler options
3348 Until you have installed CLN in a public place, the following options are
3351 When you compile CLN application code, add the flags
3353 -I$CLN_DIR/include -I$CLN_TARGETDIR/include
3355 to the C++ compiler's command line (@code{make} variable CFLAGS or CXXFLAGS).
3356 When you link CLN application code to form an executable, add the flags
3358 $CLN_TARGETDIR/src/libcln.a
3360 to the C/C++ compiler's command line (@code{make} variable LIBS).
3362 If you did a @code{make install}, the include files are installed in a
3363 public directory (normally @code{/usr/local/include}), hence you don't
3364 need special flags for compiling. The library has been installed to a
3365 public directory as well (normally @code{/usr/local/lib}), hence when
3366 linking a CLN application it is sufficient to give the flag @code{-lcln}.
3368 Since CLN version 1.1, there are two tools to make the creation of
3369 software packages that use CLN easier:
3372 @cindex @code{cln-config}
3373 @code{cln-config} is a shell script that you can use to determine the
3374 compiler and linker command line options required to compile and link a
3375 program with CLN. Start it with @code{--help} to learn about its options
3376 or consult the manpage that comes with it.
3378 @cindex @code{AC_PATH_CLN}
3379 @code{AC_PATH_CLN} is for packages configured using GNU automake.
3382 @code{AC_PATH_CLN([@var{MIN-VERSION}, [@var{ACTION-IF-FOUND} [, @var{ACTION-IF-NOT-FOUND}]]])}
3384 This macro determines the location of CLN using @code{cln-config}, which
3385 is either found in the user's path, or from the environment variable
3386 @code{CLN_CONFIG}. It tests the installed libraries to make sure that
3387 their version is not earlier than @var{MIN-VERSION} (a default version
3388 will be used if not specified). If the required version was found, sets
3389 the @env{CLN_CPPFLAGS} and the @env{CLN_LIBS} variables. This
3390 macro is in the file @file{cln.m4} which is installed in
3391 @file{$datadir/aclocal}. Note that if automake was installed with a
3392 different @samp{--prefix} than CLN, you will either have to manually
3393 move @file{cln.m4} to automake's @file{$datadir/aclocal}, or give
3394 aclocal the @samp{-I} option when running it. Here is a possible example
3395 to be included in your package's @file{configure.ac}:
3397 AC_PATH_CLN(1.1.0, [
3398 LIBS="$LIBS $CLN_LIBS"
3399 CPPFLAGS="$CPPFLAGS $CLN_CPPFLAGS"
3400 ], AC_MSG_ERROR([No suitable installed version of CLN could be found.]))
3405 @section Compatibility to old CLN versions
3407 @cindex compatibility
3409 As of CLN version 1.1 all non-macro identifiers were hidden in namespace
3410 @code{cln} in order to avoid potential name clashes with other C++
3411 libraries. If you have an old application, you will have to manually
3412 port it to the new scheme. The following principles will help during
3416 All headers are now in a separate subdirectory. Instead of including
3417 @code{cl_}@var{something}@code{.h}, include
3418 @code{cln/}@var{something}@code{.h} now.
3420 All public identifiers (typenames and functions) have lost their
3421 @code{cl_} prefix. Exceptions are all the typenames of number types,
3422 (cl_N, cl_I, cl_MI, @dots{}), rings, symbolic types (cl_string,
3423 cl_symbol) and polynomials (cl_UP_@var{type}). (This is because their
3424 names would not be mnemonic enough once the namespace @code{cln} is
3425 imported. Even in a namespace we favor @code{cl_N} over @code{N}.)
3427 All public @emph{functions} that had by a @code{cl_} in their name still
3428 carry that @code{cl_} if it is intrinsic part of a typename (as in
3429 @code{cl_I_to_int ()}).
3431 When developing other libraries, please keep in mind not to import the
3432 namespace @code{cln} in one of your public header files by saying
3433 @code{using namespace cln;}. This would propagate to other applications
3434 and can cause name clashes there.
3437 @section Include files
3438 @cindex include files
3439 @cindex header files
3441 Here is a summary of the include files and their contents.
3444 @item <cln/object.h>
3445 General definitions, reference counting, garbage collection.
3446 @item <cln/number.h>
3447 The class cl_number.
3448 @item <cln/complex.h>
3449 Functions for class cl_N, the complex numbers.
3451 Functions for class cl_R, the real numbers.
3453 Functions for class cl_F, the floats.
3454 @item <cln/sfloat.h>
3455 Functions for class cl_SF, the short-floats.
3456 @item <cln/ffloat.h>
3457 Functions for class cl_FF, the single-floats.
3458 @item <cln/dfloat.h>
3459 Functions for class cl_DF, the double-floats.
3460 @item <cln/lfloat.h>
3461 Functions for class cl_LF, the long-floats.
3462 @item <cln/rational.h>
3463 Functions for class cl_RA, the rational numbers.
3464 @item <cln/integer.h>
3465 Functions for class cl_I, the integers.
3468 @item <cln/complex_io.h>
3469 Input/Output for class cl_N, the complex numbers.
3470 @item <cln/real_io.h>
3471 Input/Output for class cl_R, the real numbers.
3472 @item <cln/float_io.h>
3473 Input/Output for class cl_F, the floats.
3474 @item <cln/sfloat_io.h>
3475 Input/Output for class cl_SF, the short-floats.
3476 @item <cln/ffloat_io.h>
3477 Input/Output for class cl_FF, the single-floats.
3478 @item <cln/dfloat_io.h>
3479 Input/Output for class cl_DF, the double-floats.
3480 @item <cln/lfloat_io.h>
3481 Input/Output for class cl_LF, the long-floats.
3482 @item <cln/rational_io.h>
3483 Input/Output for class cl_RA, the rational numbers.
3484 @item <cln/integer_io.h>
3485 Input/Output for class cl_I, the integers.
3487 Flags for customizing input operations.
3488 @item <cln/output.h>
3489 Flags for customizing output operations.
3490 @item <cln/malloc.h>
3491 @code{malloc_hook}, @code{free_hook}.
3494 @item <cln/condition.h>
3495 Conditions/exceptions.
3496 @item <cln/string.h>
3498 @item <cln/symbol.h>
3500 @item <cln/proplist.h>
3504 @item <cln/null_ring.h>
3506 @item <cln/complex_ring.h>
3507 The ring of complex numbers.
3508 @item <cln/real_ring.h>
3509 The ring of real numbers.
3510 @item <cln/rational_ring.h>
3511 The ring of rational numbers.
3512 @item <cln/integer_ring.h>
3513 The ring of integers.
3514 @item <cln/numtheory.h>
3515 Number threory functions.
3516 @item <cln/modinteger.h>
3522 @item <cln/GV_number.h>
3523 General vectors over cl_number.
3524 @item <cln/GV_complex.h>
3525 General vectors over cl_N.
3526 @item <cln/GV_real.h>
3527 General vectors over cl_R.
3528 @item <cln/GV_rational.h>
3529 General vectors over cl_RA.
3530 @item <cln/GV_integer.h>
3531 General vectors over cl_I.
3532 @item <cln/GV_modinteger.h>
3533 General vectors of modular integers.
3536 @item <cln/SV_number.h>
3537 Simple vectors over cl_number.
3538 @item <cln/SV_complex.h>
3539 Simple vectors over cl_N.
3540 @item <cln/SV_real.h>
3541 Simple vectors over cl_R.
3542 @item <cln/SV_rational.h>
3543 Simple vectors over cl_RA.
3544 @item <cln/SV_integer.h>
3545 Simple vectors over cl_I.
3546 @item <cln/SV_ringelt.h>
3547 Simple vectors of general ring elements.
3548 @item <cln/univpoly.h>
3549 Univariate polynomials.
3550 @item <cln/univpoly_integer.h>
3551 Univariate polynomials over the integers.
3552 @item <cln/univpoly_rational.h>
3553 Univariate polynomials over the rational numbers.
3554 @item <cln/univpoly_real.h>
3555 Univariate polynomials over the real numbers.
3556 @item <cln/univpoly_complex.h>
3557 Univariate polynomials over the complex numbers.
3558 @item <cln/univpoly_modint.h>
3559 Univariate polynomials over modular integer rings.
3560 @item <cln/timing.h>
3563 Includes all of the above.
3569 A function which computes the nth Fibonacci number can be written as follows.
3570 @cindex Fibonacci number
3573 #include <cln/integer.h>
3574 #include <cln/real.h>
3575 using namespace cln;
3577 // Returns F_n, computed as the nearest integer to
3578 // ((1+sqrt(5))/2)^n/sqrt(5). Assume n>=0.
3579 const cl_I fibonacci (int n)
3581 // Need a precision of ((1+sqrt(5))/2)^-n.
3582 float_format_t prec = float_format((int)(0.208987641*n+5));
3583 cl_R sqrt5 = sqrt(cl_float(5,prec));
3584 cl_R phi = (1+sqrt5)/2;
3585 return round1( expt(phi,n)/sqrt5 );
3589 Let's explain what is going on in detail.
3591 The include file @code{<cln/integer.h>} is necessary because the type
3592 @code{cl_I} is used in the function, and the include file @code{<cln/real.h>}
3593 is needed for the type @code{cl_R} and the floating point number functions.
3594 The order of the include files does not matter. In order not to write
3595 out @code{cln::}@var{foo} in this simple example we can safely import
3596 the whole namespace @code{cln}.
3598 Then comes the function declaration. The argument is an @code{int}, the
3599 result an integer. The return type is defined as @samp{const cl_I}, not
3600 simply @samp{cl_I}, because that allows the compiler to detect typos like
3601 @samp{fibonacci(n) = 100}. It would be possible to declare the return
3602 type as @code{const cl_R} (real number) or even @code{const cl_N} (complex
3603 number). We use the most specialized possible return type because functions
3604 which call @samp{fibonacci} will be able to profit from the compiler's type
3605 analysis: Adding two integers is slightly more efficient than adding the
3606 same objects declared as complex numbers, because it needs less type
3607 dispatch. Also, when linking to CLN as a non-shared library, this minimizes
3608 the size of the resulting executable program.
3610 The result will be computed as expt(phi,n)/sqrt(5), rounded to the nearest
3611 integer. In order to get a correct result, the absolute error should be less
3612 than 1/2, i.e. the relative error should be less than sqrt(5)/(2*expt(phi,n)).
3613 To this end, the first line computes a floating point precision for sqrt(5)
3616 Then sqrt(5) is computed by first converting the integer 5 to a floating point
3617 number and than taking the square root. The converse, first taking the square
3618 root of 5, and then converting to the desired precision, would not work in
3619 CLN: The square root would be computed to a default precision (normally
3620 single-float precision), and the following conversion could not help about
3621 the lacking accuracy. This is because CLN is not a symbolic computer algebra
3622 system and does not represent sqrt(5) in a non-numeric way.
3624 The type @code{cl_R} for sqrt5 and, in the following line, phi is the only
3625 possible choice. You cannot write @code{cl_F} because the C++ compiler can
3626 only infer that @code{cl_float(5,prec)} is a real number. You cannot write
3627 @code{cl_N} because a @samp{round1} does not exist for general complex
3630 When the function returns, all the local variables in the function are
3631 automatically reclaimed (garbage collected). Only the result survives and
3632 gets passed to the caller.
3634 The file @code{fibonacci.cc} in the subdirectory @code{examples}
3635 contains this implementation together with an even faster algorithm.
3637 @section Debugging support
3640 When debugging a CLN application with GNU @code{gdb}, two facilities are
3641 available from the library:
3644 @item The library does type checks, range checks, consistency checks at
3645 many places. When one of these fails, the function @code{cl_abort()} is
3646 called. Its default implementation is to perform an @code{exit(1)}, so
3647 you won't have a core dump. But for debugging, it is best to set a
3648 breakpoint at this function:
3650 (gdb) break cl_abort
3652 When this breakpoint is hit, look at the stack's backtrace:
3657 @item The debugger's normal @code{print} command doesn't know about
3658 CLN's types and therefore prints mostly useless hexadecimal addresses.
3659 CLN offers a function @code{cl_print}, callable from the debugger,
3660 for printing number objects. In order to get this function, you have
3661 to define the macro @samp{CL_DEBUG} and then include all the header files
3662 for which you want @code{cl_print} debugging support. For example:
3663 @cindex @code{CL_DEBUG}
3666 #include <cln/string.h>
3668 Now, if you have in your program a variable @code{cl_string s}, and
3669 inspect it under @code{gdb}, the output may look like this:
3672 $7 = @{<cl_gcpointer> = @{ = @{pointer = 0x8055b60, heappointer = 0x8055b60,
3673 word = 134568800@}@}, @}
3674 (gdb) call cl_print(s)
3678 Note that the output of @code{cl_print} goes to the program's error output,
3679 not to gdb's standard output.
3681 Note, however, that the above facility does not work with all CLN types,
3682 only with number objects and similar. Therefore CLN offers a member function
3683 @code{debug_print()} on all CLN types. The same macro @samp{CL_DEBUG}
3684 is needed for this member function to be implemented. Under @code{gdb},
3685 you call it like this:
3686 @cindex @code{debug_print ()}
3689 $7 = @{<cl_gcpointer> = @{ = @{pointer = 0x8055b60, heappointer = 0x8055b60,
3690 word = 134568800@}@}, @}
3691 (gdb) call s.debug_print()
3694 >call ($1).debug_print()
3699 Unfortunately, this feature does not seem to work under all circumstances.
3703 @chapter Customizing
3706 @section Error handling
3708 When a fatal error occurs, an error message is output to the standard error
3709 output stream, and the function @code{cl_abort} is called. The default
3710 version of this function (provided in the library) terminates the application.
3711 To catch such a fatal error, you need to define the function @code{cl_abort}
3712 yourself, with the prototype
3714 #include <cln/abort.h>
3715 void cl_abort (void);
3717 @cindex @code{cl_abort ()}
3718 This function must not return control to its caller.
3721 @section Floating-point underflow
3724 Floating point underflow denotes the situation when a floating-point number
3725 is to be created which is so close to @code{0} that its exponent is too
3726 low to be represented internally. By default, this causes a fatal error.
3727 If you set the global variable
3729 cl_boolean cl_inhibit_floating_point_underflow
3731 to @code{cl_true}, the error will be inhibited, and a floating-point zero
3732 will be generated instead. The default value of
3733 @code{cl_inhibit_floating_point_underflow} is @code{cl_false}.
3736 @section Customizing I/O
3738 The output of the function @code{fprint} may be customized by changing the
3739 value of the global variable @code{default_print_flags}.
3740 @cindex @code{default_print_flags}
3743 @section Customizing the memory allocator
3745 Every memory allocation of CLN is done through the function pointer
3746 @code{malloc_hook}. Freeing of this memory is done through the function
3747 pointer @code{free_hook}. The default versions of these functions,
3748 provided in the library, call @code{malloc} and @code{free} and check
3749 the @code{malloc} result against @code{NULL}.
3750 If you want to provide another memory allocator, you need to define
3751 the variables @code{malloc_hook} and @code{free_hook} yourself,
3754 #include <cln/malloc.h>
3756 void* (*malloc_hook) (size_t size) = @dots{};
3757 void (*free_hook) (void* ptr) = @dots{};
3760 @cindex @code{malloc_hook ()}
3761 @cindex @code{free_hook ()}
3762 The @code{cl_malloc_hook} function must not return a @code{NULL} pointer.
3764 It is not possible to change the memory allocator at runtime, because
3765 it is already called at program startup by the constructors of some