]> www.ginac.de Git - cln.git/blob - doc/polynomial/hermite.tex
Avoid "statement has no effect" warnings.
[cln.git] / doc / polynomial / hermite.tex
1 %% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:55 1997
2 %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
3
4 %% Don't edit this file unless you are sure what you are doing.
5 \documentclass[12pt,a4paper,oneside,onecolumn]{article}
6 \usepackage[]{fontenc}
7 \usepackage[latin1]{inputenc}
8 \usepackage[dvips]{epsfig}
9
10 %%
11 %% BEGIN The lyx specific LaTeX commands.
12 %%
13
14 \makeatletter
15 \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
16 \newcommand{\lyxtitle}[1] {\thispagestyle{empty}
17 \global\@topnum\z@
18 \section*{\LARGE \centering \sffamily \bfseries \protect#1 }
19 }
20 \newcommand{\lyxline}[1]{
21 {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
22 }
23 \newenvironment{lyxsectionbibliography}
24 {
25 \section*{\refname}
26 \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
27 \begin{list}{}{
28 \itemindent-\leftmargin
29 \labelsep 0pt
30 \renewcommand{\makelabel}{}
31 }
32 }
33 {\end{list}}
34 \newenvironment{lyxchapterbibliography}
35 {
36 \chapter*{\bibname}
37 \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
38 \begin{list}{}{
39 \itemindent-\leftmargin
40 \labelsep 0pt
41 \renewcommand{\makelabel}{}
42 }
43 }
44 {\end{list}}
45 \def\lxq{"}
46 \newenvironment{lyxcode}
47 {\list{}{
48 \rightmargin\leftmargin
49 \raggedright
50 \itemsep 0pt
51 \parsep 0pt
52 \ttfamily
53 }%
54 \item[]
55 }
56 {\endlist}
57 \newcommand{\lyxlabel}[1]{#1 \hfill}
58 \newenvironment{lyxlist}[1]
59 {\begin{list}{}
60 {\settowidth{\labelwidth}{#1}
61 \setlength{\leftmargin}{\labelwidth}
62 \addtolength{\leftmargin}{\labelsep}
63 \renewcommand{\makelabel}{\lyxlabel}}}
64 {\end{list}}
65 \newcommand{\lyxletterstyle}{
66 \setlength\parskip{0.7em}
67 \setlength\parindent{0pt}
68 }
69 \newcommand{\lyxaddress}[1]{
70 \par {\raggedright #1 
71 \vspace{1.4em}
72 \noindent\par}
73 }
74 \newcommand{\lyxrightaddress}[1]{
75 \par {\raggedleft \begin{tabular}{l}\ignorespaces
76 #1
77 \end{tabular}
78 \vspace{1.4em}
79 \par}
80 }
81 \newcommand{\lyxformula}[1]{
82 \begin{eqnarray*}
83 #1
84 \end{eqnarray*}
85 }
86 \newcommand{\lyxnumberedformula}[1]{
87 \begin{eqnarray}
88 #1
89 \end{eqnarray}
90 }
91 \makeatother
92
93 %%
94 %% END The lyx specific LaTeX commands.
95 %%
96
97 \pagestyle{plain}
98 \setcounter{secnumdepth}{3}
99 \setcounter{tocdepth}{3}
100 \begin{document}
101
102 The Hermite polynomials  \( H_{n}(x) \) are defined through 
103 \[
104 H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \]
105
106
107 \begin{description}
108
109 \item [Theorem:]~
110
111 \end{description}
112
113  \( H_{n}(x) \) satisfies the recurrence relation
114
115
116 \[
117 H_{0}(x)=1\]
118
119
120
121 \[
122 H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\]
123  for  \( n\geq 0 \) and the differential equation  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \) for all  \( n\geq 0 \).
124
125 \begin{description}
126
127 \item [Proof:]~
128
129 \end{description}
130
131 Let  \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \) be the exponential generating function of the sequence of polynomials.
132 Then, because the Taylor series development theorem holds in formal
133 power series rings (see [1], section 2.16), we can simplify
134 \begin{eqnarray*}
135 F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\
136  & = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\
137  & = & e^{2xz-z^{2}}
138 \end{eqnarray*}
139 It follows
140 that  \( \frac{d}{dz}F=(2x-2z)\cdot F \). This is equivalent to the claimed recurrence.
141
142 Starting from this equation, we compute a linear relation for the
143 partial derivatives of  \( F \). Write  \( \partial _{x}=\frac{d}{dx} \) and  \( \Delta _{z}=z\frac{d}{dz} \). One computes
144 \[
145 F=1\cdot F\]
146
147 \[
148 \partial _{x}F=2z\cdot F\]
149
150 \[
151 \partial _{x}^{2}F=4z^{2}\cdot F\]
152
153 \[
154 \Delta _{z}F=(2xz-2z^{2})\cdot F\]
155
156 \[
157 \partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\]
158
159 \[
160 \Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\]
161  Solve
162 a homogeneous  \( 5\times 6 \) system of linear equations over  \( Q(x) \) to get 
163 \[
164 (-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\]
165  This is
166 equivalent to the claimed equation  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \).
167
168 \begin{lyxsectionbibliography}
169
170 \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
171 thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and
172 2.22.
173
174 \end{lyxsectionbibliography}
175
176 \end{document}