1 #This file was created by <bruno> Sun Feb 16 14:05:04 1997
2 #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
6 \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
7 \def\ll{\langle\!\langle}
8 \def\gg{\rangle\!\rangle}
9 \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
21 \paragraph_separation indent
22 \quotes_language english
24 \paperorientation portrait
31 The Laguerre polynomials
32 \begin_inset Formula \( L_{n}(x) \)
38 L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\]
49 \begin_inset Formula \( L_{n}(x) \)
52 satisfies the recurrence relation
68 L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\]
73 \begin_inset Formula \( n\geq 0 \)
76 and the differential equation
77 \begin_inset Formula \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \)
81 \begin_inset Formula \( n\geq 0 \)
92 \begin_inset Formula \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \)
95 be the exponential generating function of the sequence of polynomials.
96 It is the diagonal series of the power series
99 G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\]
103 Because the Taylor series development theorem holds in formal power series
104 rings (see [1], section 2.
108 G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\
109 & = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\
110 & = & \frac{e^{-y}}{1-(x+y)z}
115 We take over the terminology from the
116 \begin_inset Quotes eld
120 \begin_inset Quotes erd
124 \begin_inset Formula \( R=Q[x] \)
128 \begin_inset Formula \( M=Q[[x]] \)
131 (or, if you like it better,
132 \begin_inset Formula \( M=H(C) \)
135 , the algebra of functions holomorphic in the entire complex plane).
137 \begin_inset Formula \( G\in M[[y,z]] \)
140 is not rational; nevertheless we can proceed similarly to the
141 \begin_inset Quotes eld
145 \begin_inset Quotes erd
150 \begin_inset Formula \( F(z^{2}) \)
153 is the coefficient of
154 \begin_inset Formula \( t^{0} \)
160 G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \]
164 The denominator's only zero is
165 \begin_inset Formula \( t=\frac{xz}{1-z^{2}} \)
172 e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\]
177 \begin_inset Formula \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg \)
181 This yields -- all computations being done in
182 \begin_inset Formula \( M\ll z,t\gg \)
188 G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\
189 & = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t)
194 Here, the coefficient of
195 \begin_inset Formula \( t^{0} \)
201 F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\]
208 F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\]
216 \begin_inset Formula \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \)
220 This is equivalent to the claimed recurrence.
224 Starting from the closed form for
225 \begin_inset Formula \( F \)
228 , we compute a linear relation for the partial derivatives of
229 \begin_inset Formula \( F \)
234 \begin_inset Formula \( \partial _{x}=\frac{d}{dx} \)
238 \begin_inset Formula \( \Delta _{z}=z\frac{d}{dz} \)
252 \left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\]
259 \left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\]
266 \left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\]
273 \left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\]
278 \begin_inset Formula \( 4\times 5 \)
281 system of linear equations over
282 \begin_inset Formula \( Q(x) \)
288 \left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\]
292 Divide by the first factor to get
295 (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\]
299 This is equivalent to the claimed equation
300 \begin_inset Formula \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \)
307 [1] Bruno Haible: D-finite power series in several variables.
310 Diploma thesis, University of Karlsruhe, June 1989