#This file was created by Sun Feb 16 14:24:48 1997 #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team \lyxformat 2.10 \textclass article \begin_preamble \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe \def\mod#1{\allowbreak \mkern8mu \mathop{\operator@font mod}\,\,{#1}} \def\pmod#1{\allowbreak \mkern8mu \left({\mathop{\operator@font mod}\,\,{#1}}\right)} \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen \end_preamble \language default \inputencoding latin1 \fontscheme default \epsfig dvips \papersize a4paper \paperfontsize 12 \baselinestretch 1.00 \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \quotes_language english \quotes_times 2 \paperorientation portrait \papercolumns 0 \papersides 1 \paperpagestyle plain \layout Standard \cursor 47 The Legendre polynomials \begin_inset Formula \( P_{n}(x) \) \end_inset are defined through \begin_inset Formula \[ P_{n}(x)=\frac{1}{2^{n}n!}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{2}-1)^{n}\] \end_inset (For a motivation of the \begin_inset Formula \( 2^{n} \) \end_inset in the denominator, look at \begin_inset Formula \( P_{n}(x) \) \end_inset modulo an odd prime \begin_inset Formula \( p \) \end_inset , and observe that \begin_inset Formula \( P_{n}(x)\equiv P_{p-1-n}(x)\mod p \) \end_inset for \begin_inset Formula \( 0\leq n\leq p-1 \) \end_inset . This wouldn't hold if the \begin_inset Formula \( 2^{n} \) \end_inset factor in the denominator weren't present. ) \layout Description Theorem: \layout Standard \begin_inset Formula \( P_{n}(x) \) \end_inset satisfies the recurrence relation \layout Standard \begin_inset Formula \[ P_{0}(x)=1\] \end_inset \layout Standard \begin_inset Formula \[ (n+1)\cdot P_{n+1}(x)=(2n+1)x\cdot P_{n}(x)-n\cdot P_{n-1}(x)\] \end_inset for \begin_inset Formula \( n\geq 0 \) \end_inset and the differential equation \begin_inset Formula \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \) \end_inset for all \begin_inset Formula \( n\geq 0 \) \end_inset . \layout Description Proof: \layout Standard Let \begin_inset Formula \( F:=\sum ^{\infty }_{n=0}P_{n}(x)\cdot z^{n} \) \end_inset be the generating function of the sequence of polynomials. It is the diagonal series of the power series \begin_inset Formula \[ G:=\sum _{m,n=0}^{\infty }\frac{1}{2^{n}m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\cdot z^{n}\] \end_inset Because the Taylor series development theorem holds in formal power series rings (see [1], section 2. 16), we can simplify \begin_inset Formula \begin{eqnarray*} G & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\right) \cdot z^{n}\\ & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( (x+y)^{2}-1\right) ^{n}\cdot z^{n}\\ & = & \frac{1}{1-\frac{1}{2}\left( (x+y)^{2}-1\right) z} \end{eqnarray*} \end_inset We take over the terminology from the \begin_inset Quotes eld \end_inset diag_rational \begin_inset Quotes erd \end_inset paper; here \begin_inset Formula \( R=Q[x] \) \end_inset and \begin_inset Formula \( M=Q[[x]] \) \end_inset (or, if you like it better, \begin_inset Formula \( M=H(C) \) \end_inset , the algebra of functions holomorphic in the entire complex plane). \begin_inset Formula \( G\in M[[y,z]] \) \end_inset is rational; hence \begin_inset Formula \( F \) \end_inset is algebraic over \begin_inset Formula \( R[z] \) \end_inset . Let's proceed exactly as in the \begin_inset Quotes eld \end_inset diag_series \begin_inset Quotes erd \end_inset paper. \begin_inset Formula \( F(z^{2}) \) \end_inset is the coefficient of \begin_inset Formula \( t^{0} \) \end_inset in \begin_inset Formula \[ G(zt,\frac{z}{t})=\frac{2t}{2t-\left( (x+zt)^{2}-1\right) z}=\frac{2t}{-z^{3}\cdot t^{2}+2(1-xz^{2})\cdot t+(z-x^{2}z)}\] \end_inset The splitting field of the denominator is \begin_inset Formula \( L=Q(x)(z)(\alpha ) \) \end_inset where \begin_inset Formula \[ \alpha _{1/2}=\frac{1-xz^{2}\pm \sqrt{1-2xz^{2}+z^{4}}}{z^{3}}\] \end_inset \begin_inset Formula \[ \alpha =\alpha _{1}=\frac{2}{z^{3}}-\frac{2x}{z}+\frac{1-x^{2}}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\] \end_inset \begin_inset Formula \[ \alpha _{2}=\frac{x^{2}-1}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\] \end_inset The partial fraction decomposition of \begin_inset Formula \( G(zt,\frac{z}{t}) \) \end_inset reads \begin_inset Formula \[ G(zt,\frac{z}{t})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{t-\alpha _{1}}-\frac{\alpha _{2}}{t-\alpha _{2}}\right) \] \end_inset It follows that \begin_inset Formula \[ F(z^{2})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{0-\alpha _{1}}-0\right) =\frac{1}{\sqrt{1-2xz^{2}+z^{4}}}\] \end_inset hence \begin_inset Formula \[ F(z)=\frac{1}{\sqrt{1-2xz+z^{2}}}\] \end_inset \layout Standard It follows that \begin_inset Formula \( (1-2xz+z^{2})\cdot \frac{d}{dz}F+(z-x)\cdot F=0 \) \end_inset . This is equivalent to the claimed recurrence. \layout Standard Starting from the closed form for \begin_inset Formula \( F \) \end_inset , we compute a linear relation for the partial derivatives of \begin_inset Formula \( F \) \end_inset . Write \begin_inset Formula \( \partial _{x}=\frac{d}{dx} \) \end_inset and \begin_inset Formula \( \Delta _{z}=z\frac{d}{dz} \) \end_inset . One computes \begin_inset Formula \[ F=1\cdot F\] \end_inset \begin_inset Formula \[ \left( 1-2xz+z^{2}\right) \cdot \partial _{x}F=z\cdot F\] \end_inset \begin_inset Formula \[ \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}^{2}F=3z^{2}\cdot F\] \end_inset \begin_inset Formula \[ \left( 1-2xz+z^{2}\right) \cdot \Delta _{z}F=(xz-z^{2})\cdot F\] \end_inset \begin_inset Formula \[ \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}\Delta _{z}F=(z+xz^{2}-2z^{3})\cdot F\] \end_inset \begin_inset Formula \[ \left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}^{2}F=\left( xz+(x^{2}-2)z^{2}-xz^{3}+z^{4}\right) \cdot F\] \end_inset Solve a homogeneous \begin_inset Formula \( 5\times 6 \) \end_inset system of linear equations over \begin_inset Formula \( Q(x) \) \end_inset to get \begin_inset Formula \[ \left( 1-2xz+z^{2}\right) ^{2}\cdot \left( (-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F\right) =0\] \end_inset Divide by the first factor to get \begin_inset Formula \[ (-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F=0\] \end_inset This is equivalent to the claimed equation \begin_inset Formula \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \) \end_inset . \layout Bibliography [1] Bruno Haible: D-finite power series in several variables. \shape italic Diploma thesis, University of Karlsruhe, June 1989 \shape default . Sections 2. 14, 2. 15 and 2. 22.