// catalanconst(). // General includes. #include "cl_sysdep.h" // Specification. #include "cl_F_tran.h" // Implementation. #include "cln/lfloat.h" #include "cl_LF_tran.h" #include "cl_LF.h" #include "cln/integer.h" #include "cl_alloca.h" namespace cln { const cl_LF compute_catalanconst_ramanujan (uintC len) { // [Jonathan M. Borwein, Peter B. Borwein: Pi and the AGM. // Wiley 1987. Section 11.3, exercise 16 g, p. 386] // G = 3/8 * sum(n=0..infty, n!^2 / (2n+1)!*(2n+1)) // + pi/8 * log(2+sqrt(3)). // Every summand gives 0.6 new decimal digits in precision. // The sum is best evaluated using fixed-point arithmetic, // so that the precision is reduced for the later summands. var uintC actuallen = len + 2; // 2 guard digits var sintC scale = intDsize*actuallen; var cl_I sum = 0; var cl_I n = 0; var cl_I factor = ash(1,scale); while (!zerop(factor)) { sum = sum + truncate1(factor,2*n+1); n = n+1; factor = truncate1(factor*n,2*(2*n+1)); } var cl_LF fsum = scale_float(cl_I_to_LF(sum,actuallen),-scale); var cl_LF g = scale_float(The(cl_LF)(3*fsum) + The(cl_LF)(pi(actuallen)) * ln(cl_I_to_LF(2,actuallen)+sqrt(cl_I_to_LF(3,actuallen))), -3); return shorten(g,len); // verkürzen und fertig } // Bit complexity (N := len): O(N^2). const cl_LF compute_catalanconst_ramanujan_fast (uintC len) { // Same formula as above, using a binary splitting evaluation. // See [Borwein, Borwein, section 10.2.3]. struct rational_series_stream : cl_pqb_series_stream { cl_I n; static cl_pqb_series_term computenext (cl_pqb_series_stream& thisss) { var rational_series_stream& thiss = (rational_series_stream&)thisss; var cl_I n = thiss.n; var cl_pqb_series_term result; if (n==0) { result.p = 1; result.q = 1; result.b = 1; } else { result.p = n; result.b = 2*n+1; result.q = result.b << 1; // 2*(2*n+1) } thiss.n = n+1; return result; } rational_series_stream () : cl_pqb_series_stream (rational_series_stream::computenext), n (0) {} } series; var uintC actuallen = len + 2; // 2 guard digits // Evaluate a sum(0 <= n < N, a(n)/b(n) * (p(0)...p(n))/(q(0)...q(n))) // with appropriate N, and // a(n) = 1, b(n) = 2*n+1, // p(n) = n for n>0, q(n) = 2*(2*n+1) for n>0. var uintC N = (intDsize/2)*actuallen; // 4^-N <= 2^(-intDsize*actuallen). var cl_LF fsum = eval_rational_series(N,series,actuallen,actuallen); var cl_LF g = scale_float(The(cl_LF)(3*fsum) + The(cl_LF)(pi(actuallen)) * ln(cl_I_to_LF(2,actuallen)+sqrt(cl_I_to_LF(3,actuallen))), -3); return shorten(g,len); // verkürzen und fertig } // Bit complexity (N := len): O(log(N)^2*M(N)). const cl_LF compute_catalanconst_expintegral1 (uintC len) { // We compute f(x) classically and g(x) using the partial sums of f(x). var uintC actuallen = len+2; // 2 guard digits var uintC x = (uintC)(0.693148*intDsize*actuallen)+1; var uintC N = (uintC)(2.718281828*x); var cl_LF fterm = cl_I_to_LF(1,actuallen); var cl_LF fsum = fterm; var cl_LF gterm = fterm; var cl_LF gsum = gterm; var uintC n; // After n loops // fterm = x^n/n!, fsum = 1 + x/1! + ... + x^n/n!, // gterm = S_n*x^n/n!, gsum = S_0*x^0/0! + ... + S_n*x^n/n!. for (n = 1; n < N; n++) { fterm = The(cl_LF)(fterm*x)/n; fsum = fsum + fterm; gterm = The(cl_LF)(gterm*x)/n; if (evenp(n)) gterm = gterm + fterm/square((cl_I)(2*n+1)); else gterm = gterm - fterm/square((cl_I)(2*n+1)); gsum = gsum + gterm; } var cl_LF result = gsum/fsum; return shorten(result,len); // verkürzen und fertig } // Bit complexity (N = len): O(N^2). // Same algorithm as expintegral1, but using binary splitting to evaluate // the sums. const cl_LF compute_catalanconst_expintegral2 (uintC len) { var uintC actuallen = len+2; // 2 guard digits var uintC x = (uintC)(0.693148*intDsize*actuallen)+1; var uintC N = (uintC)(2.718281828*x); CL_ALLOCA_STACK; var cl_pqd_series_term* args = (cl_pqd_series_term*) cl_alloca(N*sizeof(cl_pqd_series_term)); var uintC n; for (n = 0; n < N; n++) { if (n==0) { init1(cl_I, args[n].p) (1); init1(cl_I, args[n].q) (1); } else { init1(cl_I, args[n].p) (x); init1(cl_I, args[n].q) (n); } init1(cl_I, args[n].d) (evenp(n) ? square((cl_I)(2*n+1)) : -square((cl_I)(2*n+1))); } var cl_LF result = eval_pqd_series(N,args,actuallen); for (n = 0; n < N; n++) { args[n].p.~cl_I(); args[n].q.~cl_I(); args[n].d.~cl_I(); } return shorten(result,len); // verkürzen und fertig } // Bit complexity (N = len): O(log(N)^2*M(N)). // Using Cohen-Villegas-Zagier acceleration, but without binary splitting. const cl_LF compute_catalanconst_cvz1 (uintC len) { var uintC actuallen = len+2; // 2 guard digits var uintC N = (uintC)(0.39321985*intDsize*actuallen)+1; #if 0 var cl_LF fterm = cl_I_to_LF(2*(cl_I)N*(cl_I)N,actuallen); var cl_LF fsum = fterm; var cl_LF gterm = fterm; var cl_LF gsum = gterm; var uintC n; // After n loops // fterm = (N+n)!N/(2n+2)!(N-n-1)!*2^(2n+2), fsum = ... + fterm, // gterm = S_n*fterm, gsum = ... + gterm. for (n = 1; n < N; n++) { fterm = The(cl_LF)(fterm*(2*(cl_I)(N-n)*(cl_I)(N+n)))/((cl_I)(2*n+1)*(cl_I)(n+1)); fsum = fsum + fterm; gterm = The(cl_LF)(gterm*(2*(cl_I)(N-n)*(cl_I)(N+n)))/((cl_I)(2*n+1)*(cl_I)(n+1)); if (evenp(n)) gterm = gterm + fterm/square((cl_I)(2*n+1)); else gterm = gterm - fterm/square((cl_I)(2*n+1)); gsum = gsum + gterm; } var cl_LF result = gsum/(cl_I_to_LF(1,actuallen)+fsum); #else // Take advantage of the fact that fterm and fsum are integers. var cl_I fterm = 2*(cl_I)N*(cl_I)N; var cl_I fsum = fterm; var cl_LF gterm = cl_I_to_LF(fterm,actuallen); var cl_LF gsum = gterm; var uintC n; // After n loops // fterm = (N+n)!N/(2n+2)!(N-n-1)!*2^(2n+2), fsum = ... + fterm, // gterm = S_n*fterm, gsum = ... + gterm. for (n = 1; n < N; n++) { fterm = exquopos(fterm*(2*(cl_I)(N-n)*(cl_I)(N+n)),(cl_I)(2*n+1)*(cl_I)(n+1)); fsum = fsum + fterm; gterm = The(cl_LF)(gterm*(2*(cl_I)(N-n)*(cl_I)(N+n)))/((cl_I)(2*n+1)*(cl_I)(n+1)); if (evenp(n)) gterm = gterm + cl_I_to_LF(fterm,actuallen)/square((cl_I)(2*n+1)); else gterm = gterm - cl_I_to_LF(fterm,actuallen)/square((cl_I)(2*n+1)); gsum = gsum + gterm; } var cl_LF result = gsum/cl_I_to_LF(1+fsum,actuallen); #endif return shorten(result,len); // verkürzen und fertig } // Bit complexity (N = len): O(N^2). // Using Cohen-Villegas-Zagier acceleration, with binary splitting. const cl_LF compute_catalanconst_cvz2 (uintC len) { var uintC actuallen = len+2; // 2 guard digits var uintC N = (uintC)(0.39321985*intDsize*actuallen)+1; CL_ALLOCA_STACK; var cl_pqd_series_term* args = (cl_pqd_series_term*) cl_alloca(N*sizeof(cl_pqd_series_term)); var uintC n; for (n = 0; n < N; n++) { init1(cl_I, args[n].p) (2*(cl_I)(N-n)*(cl_I)(N+n)); init1(cl_I, args[n].q) ((cl_I)(2*n+1)*(cl_I)(n+1)); init1(cl_I, args[n].d) (evenp(n) ? square((cl_I)(2*n+1)) : -square((cl_I)(2*n+1))); } var cl_pqd_series_result sums; eval_pqd_series_aux(N,args,sums); // Here we need U/(1+S) = V/D(Q+T). var cl_LF result = cl_I_to_LF(sums.V,actuallen) / The(cl_LF)(sums.D * cl_I_to_LF(sums.Q+sums.T,actuallen)); for (n = 0; n < N; n++) { args[n].p.~cl_I(); args[n].q.~cl_I(); args[n].d.~cl_I(); } return shorten(result,len); // verkürzen und fertig } // Bit complexity (N = len): O(log(N)^2*M(N)). const cl_LF compute_catalanconst_lupas (uintC len) { // [Alexandru Lupas. Formulae for Some Classical Constants. // Proceedings of ROGER-2000. // http://www.lacim.uqam.ca/~plouffe/articles/alupas1.pdf] // [http://mathworld.wolfram.com/CatalansConstant.html] // G = 19/18 * sum(n=0..infty, // mul(m=1..n, -32*((80*m^3+72*m^2-18*m-19)*m^3)/ // (10240*m^6+14336*m^5+2560*m^4-3072*m^3-888*m^2+72*m+27))). struct rational_series_stream : cl_pq_series_stream { cl_I n; static cl_pq_series_term computenext (cl_pq_series_stream& thisss) { var rational_series_stream& thiss = (rational_series_stream&)thisss; var cl_I n = thiss.n; var cl_pq_series_term result; if (zerop(n)) { result.p = 1; result.q = 1; } else { // Compute -32*((80*n^3+72*n^2-18*n-19)*n^3) (using Horner scheme): result.p = (19+(18+(-72-80*n)*n)*n)*n*n*n << 5; // Compute 10240*n^6+14336*n^5+2560*n^4-3072*n^3-888*n^2+72*n+27: result.q = 27+(72+(-888+(-3072+(2560+(14336+10240*n)*n)*n)*n)*n)*n; } thiss.n = plus1(n); return result; } rational_series_stream () : cl_pq_series_stream (rational_series_stream::computenext), n (0) {} } series; var uintC actuallen = len + 2; // 2 guard digits var uintC N = (intDsize/2)*actuallen; var cl_LF fsum = eval_rational_series(N,series,actuallen,actuallen); var cl_LF g = fsum*cl_I_to_LF(19,actuallen)/cl_I_to_LF(18,actuallen); return shorten(g,len); } // Bit complexity (N = len): O(log(N)^2*M(N)). // Timings of the above algorithms, on an AMD Opteron 1.7 GHz, running Linux/x86. // N ram ramfast exp1 exp2 cvz1 cvz2 lupas // 25 0.0011 0.0010 0.0094 0.0107 0.0021 0.0016 0.0034 // 50 0.0030 0.0025 0.0280 0.0317 0.0058 0.0045 0.0095 // 100 0.0087 0.0067 0.0854 0.0941 0.0176 0.0121 0.0260 // 250 0.043 0.029 0.462 0.393 0.088 0.055 0.109 // 500 0.15 0.086 1.7 1.156 0.323 0.162 0.315 // 1000 0.57 0.25 7.5 3.23 1.27 0.487 0.864 // 2500 3.24 1.10 52.2 12.4 8.04 2.02 3.33 // 5000 13.1 3.06 218 32.7 42.1 5.59 8.80 // 10000 52.7 8.2 910 85.3 216.7 15.3 22.7 // 25000 342 29.7 6403 295 1643 54.5 77.3 // 50000 89.9 139 195 //100000 227 363 483 // asymp. N^2 FAST N^2 FAST N^2 FAST FAST // (FAST means O(log(N)^2*M(N))) // // The "ramfast" algorithm is always fastest. const cl_LF compute_catalanconst (uintC len) { return compute_catalanconst_ramanujan_fast(len); } // Bit complexity (N := len): O(log(N)^2*M(N)). const cl_LF catalanconst (uintC len) { var uintC oldlen = TheLfloat(cl_LF_catalanconst)->len; // vorhandene Länge if (len < oldlen) return shorten(cl_LF_catalanconst,len); if (len == oldlen) return cl_LF_catalanconst; // TheLfloat(cl_LF_catalanconst)->len um mindestens einen konstanten Faktor // > 1 wachsen lassen, damit es nicht zu häufig nachberechnet wird: var uintC newlen = len; oldlen += floor(oldlen,2); // oldlen * 3/2 if (newlen < oldlen) newlen = oldlen; // gewünschte > vorhandene Länge -> muß nachberechnen: cl_LF_catalanconst = compute_catalanconst(newlen); return (len < newlen ? shorten(cl_LF_catalanconst,len) : cl_LF_catalanconst); } } // namespace cln