// eval_rational_series(). // General includes. #include "cl_sysdep.h" // Specification. #include "cl_LF_tran.h" // Implementation. #include "cln/lfloat.h" #include "cln/integer.h" #include "cln/exception.h" #include "cl_LF.h" namespace cln { // Subroutine. // Evaluates S = sum(N1 <= n < N2, a(n)/b(n) * (p(N1)...p(n))/(q(N1)...q(n))) // and returns P = p(N1)...p(N2-1), Q = q(N1)...q(N2-1), B = B(N1)...B(N2-1) // and T = B*Q*S (all integers). On entry N1 < N2. // P will not be computed if a NULL pointer is passed. static void eval_pa_series_aux (uintC N1, uintC N2, const cl_pa_series& args, cl_I* P, cl_I* T) { switch (N2 - N1) { case 0: throw runtime_exception(); break; case 1: if (P) { *P = args.pv[N1]; } *T = args.av[N1] * args.pv[N1]; break; case 2: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; if (P) { *P = p01; } *T = args.av[N1] * args.pv[N1] + args.av[N1+1] * p01; break; } case 3: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; if (P) { *P = p012; } *T = args.av[N1] * args.pv[N1] + args.av[N1+1] * p01 + args.av[N1+2] * p012; break; } case 4: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; var cl_I p0123 = p012 * args.pv[N1+3]; if (P) { *P = p0123; } *T = args.av[N1] * args.pv[N1] + args.av[N1+1] * p01 + args.av[N1+2] * p012 + args.av[N1+3] * p0123; break; } default: { var uintC Nm = (N1+N2)/2; // midpoint // Compute left part. var cl_I LP, LT; eval_pa_series_aux(N1,Nm,args,&LP,<); // Compute right part. var cl_I RP, RT; eval_pa_series_aux(Nm,N2,args,(P?&RP:(cl_I*)0),&RT); // Put together partial results. if (P) { *P = LP*RP; } // S = LS + LP * RS, so T = LT + LP*RT. *T = LT + LP*RT; break; } } } const cl_LF eval_rational_series (uintC N, const cl_pa_series& args, uintC len) { if (N==0) return cl_I_to_LF(0,len); var cl_I T; eval_pa_series_aux(0,N,args,NULL,&T); return cl_I_to_LF(T,len); } // Bit complexity (if p(n), q(n), a(n), b(n) have length O(log(n))): // O(log(N)^2*M(N)). } // namespace cln