// eval_rational_series(). // General includes. #include "cl_sysdep.h" // Specification. #include "cl_LF_tran.h" // Implementation. #include "cln/lfloat.h" #include "cln/integer.h" #include "cln/abort.h" #include "cl_LF.h" namespace cln { // Subroutine. // Evaluates S = sum(N1 <= n < N2, a(n)/b(n) * (p(N1)...p(n))/(q(N1)...q(n))) // and returns P = p(N1)...p(N2-1), Q = q(N1)...q(N2-1), B = B(N1)...B(N2-1) // and T = B*Q*S (all integers). On entry N1 < N2. // P will not be computed if a NULL pointer is passed. static void eval_pqab_series_aux (uintL N1, uintL N2, const cl_pqab_series& args, cl_I* P, cl_I* Q, cl_I* B, cl_I* T) { switch (N2 - N1) { case 0: cl_abort(); break; case 1: if (P) { *P = args.pv[N1]; } *Q = args.qv[N1]; *B = args.bv[N1]; *T = args.av[N1] * args.pv[N1]; break; case 2: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; if (P) { *P = p01; } *Q = args.qv[N1] * args.qv[N1+1]; *B = args.bv[N1] * args.bv[N1+1]; *T = args.bv[N1+1] * args.qv[N1+1] * args.av[N1] * args.pv[N1] + args.bv[N1] * args.av[N1+1] * p01; break; } case 3: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; if (P) { *P = p012; } var cl_I q12 = args.qv[N1+1] * args.qv[N1+2]; *Q = args.qv[N1] * q12; var cl_I b12 = args.bv[N1+1] * args.bv[N1+2]; *B = args.bv[N1] * b12; *T = b12 * q12 * args.av[N1] * args.pv[N1] + args.bv[N1] * (args.bv[N1+2] * args.qv[N1+2] * args.av[N1+1] * p01 + args.bv[N1+1] * args.av[N1+2] * p012); break; } case 4: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; var cl_I p0123 = p012 * args.pv[N1+3]; if (P) { *P = p0123; } var cl_I q23 = args.qv[N1+2] * args.qv[N1+3]; var cl_I q123 = args.qv[N1+1] * q23; *Q = args.qv[N1] * q123; var cl_I b01 = args.bv[N1] * args.bv[N1+1]; var cl_I b23 = args.bv[N1+2] * args.bv[N1+3]; *B = b01 * b23; *T = b23 * (args.bv[N1+1] * q123 * args.av[N1] * args.pv[N1] + args.bv[N1] * q23 * args.av[N1+1] * p01) + b01 * (args.bv[N1+3] * args.qv[N1+3] * args.av[N1+2] * p012 + args.bv[N1+2] * args.av[N1+3] * p0123); break; } default: { var uintL Nm = (N1+N2)/2; // midpoint // Compute left part. var cl_I LP, LQ, LB, LT; eval_pqab_series_aux(N1,Nm,args,&LP,&LQ,&LB,<); // Compute right part. var cl_I RP, RQ, RB, RT; eval_pqab_series_aux(Nm,N2,args,(P?&RP:(cl_I*)0),&RQ,&RB,&RT); // Put together partial results. if (P) { *P = LP*RP; } *Q = LQ*RQ; *B = LB*RB; // S = LS + LP/LQ * RS, so T = RB*RQ*LT + LB*LP*RT. *T = RB*RQ*LT + LB*LP*RT; break; } } } static void eval_pqsab_series_aux (uintL N1, uintL N2, const cl_pqab_series& args, cl_I* P, cl_I* Q, uintL* QS, cl_I* B, cl_I* T) { switch (N2 - N1) { case 0: cl_abort(); break; case 1: if (P) { *P = args.pv[N1]; } *Q = args.qv[N1]; *QS = args.qsv[N1]; *B = args.bv[N1]; *T = args.av[N1] * args.pv[N1]; break; case 2: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; if (P) { *P = p01; } *Q = args.qv[N1] * args.qv[N1+1]; *QS = args.qsv[N1] + args.qsv[N1+1]; *B = args.bv[N1] * args.bv[N1+1]; *T = ((args.bv[N1+1] * args.qv[N1+1] * args.av[N1] * args.pv[N1]) << args.qsv[N1+1]) + args.bv[N1] * args.av[N1+1] * p01; break; } case 3: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; if (P) { *P = p012; } var cl_I q12 = args.qv[N1+1] * args.qv[N1+2]; *Q = args.qv[N1] * q12; *QS = args.qsv[N1] + args.qsv[N1+1] + args.qsv[N1+2]; var cl_I b12 = args.bv[N1+1] * args.bv[N1+2]; *B = args.bv[N1] * b12; *T = ((b12 * q12 * args.av[N1] * args.pv[N1]) << (args.qsv[N1+1] + args.qsv[N1+2])) + args.bv[N1] * (((args.bv[N1+2] * args.qv[N1+2] * args.av[N1+1] * p01) << args.qsv[N1+2]) + args.bv[N1+1] * args.av[N1+2] * p012); break; } case 4: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; var cl_I p0123 = p012 * args.pv[N1+3]; if (P) { *P = p0123; } var cl_I q23 = args.qv[N1+2] * args.qv[N1+3]; var cl_I q123 = args.qv[N1+1] * q23; *Q = args.qv[N1] * q123; *QS = args.qsv[N1] + args.qsv[N1+1] + args.qsv[N1+2] + args.qsv[N1+3]; var cl_I b01 = args.bv[N1] * args.bv[N1+1]; var cl_I b23 = args.bv[N1+2] * args.bv[N1+3]; *B = b01 * b23; *T = ((b23 * (((args.bv[N1+1] * q123 * args.av[N1] * args.pv[N1]) << args.qsv[N1+1]) + args.bv[N1] * q23 * args.av[N1+1] * p01)) << (args.qsv[N1+2] + args.qsv[N1+3])) + b01 * (((args.bv[N1+3] * args.qv[N1+3] * args.av[N1+2] * p012) << args.qsv[N1+3]) + args.bv[N1+2] * args.av[N1+3] * p0123); break; } default: { var uintL Nm = (N1+N2)/2; // midpoint // Compute left part. var cl_I LP, LQ, LB, LT; var uintL LQS; eval_pqsab_series_aux(N1,Nm,args,&LP,&LQ,&LQS,&LB,<); // Compute right part. var cl_I RP, RQ, RB, RT; var uintL RQS; eval_pqsab_series_aux(Nm,N2,args,(P?&RP:(cl_I*)0),&RQ,&RQS,&RB,&RT); // Put together partial results. if (P) { *P = LP*RP; } *Q = LQ*RQ; *QS = LQS+RQS; *B = LB*RB; // S = LS + LP/LQ * RS, so T = RB*RQ*LT + LB*LP*RT. *T = ((RB*RQ*LT) << RQS) + LB*LP*RT; break; } } } const cl_LF eval_rational_series (uintL N, const cl_pqab_series& args, uintC len) { if (N==0) return cl_I_to_LF(0,len); var cl_I Q, B, T; if (!args.qsv) { eval_pqab_series_aux(0,N,args,NULL,&Q,&B,&T); return cl_I_to_LF(T,len) / cl_I_to_LF(B*Q,len); } else { // Precomputation of the shift counts: // Split qv[n] into qv[n]*2^qsv[n]. { var cl_I* qp = args.qv; var uintL* qsp = args.qsv; for (var uintL n = 0; n < N; n++, qp++, qsp++) { // Pull out maximal power of 2 out of *qp = args.qv[n]. var uintL qs = 0; if (!zerop(*qp)) { qs = ord2(*qp); if (qs > 0) *qp = *qp >> qs; } *qsp = qs; } } // Main computation. var uintL QS; eval_pqsab_series_aux(0,N,args,NULL,&Q,&QS,&B,&T); return cl_I_to_LF(T,len) / scale_float(cl_I_to_LF(B*Q,len),QS); } } // Bit complexity (if p(n), q(n), a(n), b(n) have length O(log(n))): // O(log(N)^2*M(N)). } // namespace cln