// eval_rational_series(). // General includes. #include "base/cl_sysdep.h" // Specification. #include "float/transcendental/cl_LF_tran.h" // Implementation. #include "cln/lfloat.h" #include "cln/integer.h" #include "cln/real.h" #include "cln/exception.h" #include "float/lfloat/cl_LF.h" #include "base/cl_alloca.h" namespace cln { // Subroutine. // Evaluates S = sum(N1 <= n < N2, a(n)/b(n) * (p(N1)...p(n))/(q(N1)...q(n))) // and returns P = p(N1)...p(N2-1), Q = q(N1)...q(N2-1), B = B(N1)...B(N2-1) // and T = B*Q*S (all integers). On entry N1 < N2. // P will not be computed if a NULL pointer is passed. static void eval_pqb_series_aux (uintC N1, uintC N2, const cl_pqb_series& args, cl_I* P, cl_I* Q, cl_I* B, cl_I* T) { switch (N2 - N1) { case 0: throw runtime_exception(); break; case 1: if (P) { *P = args.pv[N1]; } *Q = args.qv[N1]; *B = args.bv[N1]; *T = args.pv[N1]; break; case 2: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; if (P) { *P = p01; } *Q = args.qv[N1] * args.qv[N1+1]; *B = args.bv[N1] * args.bv[N1+1]; *T = args.bv[N1+1] * args.qv[N1+1] * args.pv[N1] + args.bv[N1] * p01; break; } case 3: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; if (P) { *P = p012; } var cl_I q12 = args.qv[N1+1] * args.qv[N1+2]; *Q = args.qv[N1] * q12; var cl_I b12 = args.bv[N1+1] * args.bv[N1+2]; *B = args.bv[N1] * b12; *T = b12 * q12 * args.pv[N1] + args.bv[N1] * (args.bv[N1+2] * args.qv[N1+2] * p01 + args.bv[N1+1] * p012); break; } case 4: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; var cl_I p0123 = p012 * args.pv[N1+3]; if (P) { *P = p0123; } var cl_I q23 = args.qv[N1+2] * args.qv[N1+3]; var cl_I q123 = args.qv[N1+1] * q23; *Q = args.qv[N1] * q123; var cl_I b01 = args.bv[N1] * args.bv[N1+1]; var cl_I b23 = args.bv[N1+2] * args.bv[N1+3]; *B = b01 * b23; *T = b23 * (args.bv[N1+1] * q123 * args.pv[N1] + args.bv[N1] * q23 * p01) + b01 * (args.bv[N1+3] * args.qv[N1+3] * p012 + args.bv[N1+2] * p0123); break; } default: { var uintC Nm = (N1+N2)/2; // midpoint // Compute left part. var cl_I LP, LQ, LB, LT; eval_pqb_series_aux(N1,Nm,args,&LP,&LQ,&LB,<); // Compute right part. var cl_I RP, RQ, RB, RT; eval_pqb_series_aux(Nm,N2,args,(P?&RP:(cl_I*)0),&RQ,&RB,&RT); // Put together partial results. if (P) { *P = LP*RP; } *Q = LQ*RQ; *B = LB*RB; // S = LS + LP/LQ * RS, so T = RB*RQ*LT + LB*LP*RT. *T = RB*RQ*LT + LB*LP*RT; break; } } } template<> const cl_LF eval_rational_series (uintC N, const cl_pqb_series& args, uintC len) { if (N==0) return cl_I_to_LF(0,len); var cl_I Q, B, T; eval_pqb_series_aux(0,N,args,NULL,&Q,&B,&T); return cl_I_to_LF(T,len) / cl_I_to_LF(B*Q,len); } static void eval_pqsb_series_aux (uintC N1, uintC N2, const cl_pqb_series& args, const uintC* qsv, cl_I* P, cl_I* Q, uintC* QS, cl_I* B, cl_I* T) { switch (N2 - N1) { case 0: throw runtime_exception(); break; case 1: if (P) { *P = args.pv[N1]; } *Q = args.qv[N1]; *QS = qsv[N1]; *B = args.bv[N1]; *T = args.pv[N1]; break; case 2: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; if (P) { *P = p01; } *Q = args.qv[N1] * args.qv[N1+1]; *QS = qsv[N1] + qsv[N1+1]; *B = args.bv[N1] * args.bv[N1+1]; *T = ((args.bv[N1+1] * args.qv[N1+1] * args.pv[N1]) << qsv[N1+1]) + args.bv[N1] * p01; break; } case 3: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; if (P) { *P = p012; } var cl_I q12 = args.qv[N1+1] * args.qv[N1+2]; *Q = args.qv[N1] * q12; *QS = qsv[N1] + qsv[N1+1] + qsv[N1+2]; var cl_I b12 = args.bv[N1+1] * args.bv[N1+2]; *B = args.bv[N1] * b12; *T = ((b12 * q12 * args.pv[N1]) << (qsv[N1+1] + qsv[N1+2])) + args.bv[N1] * (((args.bv[N1+2] * args.qv[N1+2] * p01) << qsv[N1+2]) + args.bv[N1+1] * p012); break; } case 4: { var cl_I p01 = args.pv[N1] * args.pv[N1+1]; var cl_I p012 = p01 * args.pv[N1+2]; var cl_I p0123 = p012 * args.pv[N1+3]; if (P) { *P = p0123; } var cl_I q23 = args.qv[N1+2] * args.qv[N1+3]; var cl_I q123 = args.qv[N1+1] * q23; *Q = args.qv[N1] * q123; *QS = qsv[N1] + qsv[N1+1] + qsv[N1+2] + qsv[N1+3]; var cl_I b01 = args.bv[N1] * args.bv[N1+1]; var cl_I b23 = args.bv[N1+2] * args.bv[N1+3]; *B = b01 * b23; *T = ((b23 * (((args.bv[N1+1] * q123 * args.pv[N1]) << qsv[N1+1]) + args.bv[N1] * q23 * p01)) << (qsv[N1+2] + qsv[N1+3])) + b01 * (((args.bv[N1+3] * args.qv[N1+3] * p012) << qsv[N1+3]) + args.bv[N1+2] * p0123); break; } default: { var uintC Nm = (N1+N2)/2; // midpoint // Compute left part. var cl_I LP, LQ, LB, LT; var uintC LQS; eval_pqsb_series_aux(N1,Nm,args,qsv,&LP,&LQ,&LQS,&LB,<); // Compute right part. var cl_I RP, RQ, RB, RT; var uintC RQS; eval_pqsb_series_aux(Nm,N2,args,qsv,(P?&RP:(cl_I*)0),&RQ,&RQS,&RB,&RT); // Put together partial results. if (P) { *P = LP*RP; } *Q = LQ*RQ; *QS = LQS+RQS; *B = LB*RB; // S = LS + LP/LQ * RS, so T = RB*RQ*LT + LB*LP*RT. *T = ((RB*RQ*LT) << RQS) + LB*LP*RT; break; } } } template<> const cl_LF eval_rational_series (uintC N, const cl_pqb_series& args, uintC len) { if (N==0) return cl_I_to_LF(0,len); var cl_I Q, B, T; // Precomputation of the shift counts: // Split qv[n] into qv[n]*2^qsv[n]. CL_ALLOCA_STACK; var uintC* qsv = (uintC*) cl_alloca(N*sizeof(uintC)); var cl_I* qp = args.qv; var uintC* qsp = qsv; for (var uintC n = 0; n < N; n++, qp++, qsp++) { *qsp = pullout_shiftcount(*qp); } // Main computation. var uintC QS; eval_pqsb_series_aux(0,N,args,qsv,NULL,&Q,&QS,&B,&T); return cl_I_to_LF(T,len) / scale_float(cl_I_to_LF(B*Q,len),QS); } static void eval_pqb_series_aux (uintC N1, uintC N2, cl_pqb_series_stream& args, cl_I* P, cl_I* Q, cl_I* B, cl_I* T) { switch (N2 - N1) { case 0: throw runtime_exception(); break; case 1: { var cl_pqb_series_term v0 = args.next(); // [N1] if (P) { *P = v0.p; } *Q = v0.q; *B = v0.b; *T = v0.p; break; } case 2: { var cl_pqb_series_term v0 = args.next(); // [N1] var cl_pqb_series_term v1 = args.next(); // [N1+1] var cl_I p01 = v0.p * v1.p; if (P) { *P = p01; } *Q = v0.q * v1.q; *B = v0.b * v1.b; *T = v1.b * v1.q * v0.p + v0.b * p01; break; } case 3: { var cl_pqb_series_term v0 = args.next(); // [N1] var cl_pqb_series_term v1 = args.next(); // [N1+1] var cl_pqb_series_term v2 = args.next(); // [N1+2] var cl_I p01 = v0.p * v1.p; var cl_I p012 = p01 * v2.p; if (P) { *P = p012; } var cl_I q12 = v1.q * v2.q; *Q = v0.q * q12; var cl_I b12 = v1.b * v2.b; *B = v0.b * b12; *T = b12 * q12 * v0.p + v0.b * (v2.b * v2.q * p01 + v1.b * p012); break; } case 4: { var cl_pqb_series_term v0 = args.next(); // [N1] var cl_pqb_series_term v1 = args.next(); // [N1+1] var cl_pqb_series_term v2 = args.next(); // [N1+2] var cl_pqb_series_term v3 = args.next(); // [N1+3] var cl_I p01 = v0.p * v1.p; var cl_I p012 = p01 * v2.p; var cl_I p0123 = p012 * v3.p; if (P) { *P = p0123; } var cl_I q23 = v2.q * v3.q; var cl_I q123 = v1.q * q23; *Q = v0.q * q123; var cl_I b01 = v0.b * v1.b; var cl_I b23 = v2.b * v3.b; *B = b01 * b23; *T = b23 * (v1.b * q123 * v0.p + v0.b * q23 * p01) + b01 * (v3.b * v3.q * p012 + v2.b * p0123); break; } default: { var uintC Nm = (N1+N2)/2; // midpoint // Compute left part. var cl_I LP, LQ, LB, LT; eval_pqb_series_aux(N1,Nm,args,&LP,&LQ,&LB,<); // Compute right part. var cl_I RP, RQ, RB, RT; eval_pqb_series_aux(Nm,N2,args,(P?&RP:(cl_I*)0),&RQ,&RB,&RT); // Put together partial results. if (P) { *P = LP*RP; } *Q = LQ*RQ; *B = LB*RB; // S = LS + LP/LQ * RS, so T = RB*RQ*LT + LB*LP*RT. *T = RB*RQ*LT + LB*LP*RT; break; } } } template<> const cl_LF eval_rational_series (uintC N, cl_pqb_series_stream& args, uintC len) { if (N==0) return cl_I_to_LF(0,len); var cl_I Q, B, T; eval_pqb_series_aux(0,N,args,NULL,&Q,&B,&T); return cl_I_to_LF(T,len) / cl_I_to_LF(B*Q,len); } static void eval_pqb_series_aux (uintC N1, uintC N2, cl_pqb_series_stream& args, cl_R* P, cl_R* Q, cl_R* B, cl_R* T, uintC trunclen) { switch (N2 - N1) { case 0: throw runtime_exception(); break; case 1: { var cl_pqb_series_term v0 = args.next(); // [N1] if (P) { *P = v0.p; } *Q = v0.q; *B = v0.b; *T = v0.p; break; } case 2: { var cl_pqb_series_term v0 = args.next(); // [N1] var cl_pqb_series_term v1 = args.next(); // [N1+1] var cl_I p01 = v0.p * v1.p; if (P) { *P = p01; } *Q = v0.q * v1.q; *B = v0.b * v1.b; *T = v1.b * v1.q * v0.p + v0.b * p01; break; } case 3: { var cl_pqb_series_term v0 = args.next(); // [N1] var cl_pqb_series_term v1 = args.next(); // [N1+1] var cl_pqb_series_term v2 = args.next(); // [N1+2] var cl_I p01 = v0.p * v1.p; var cl_I p012 = p01 * v2.p; if (P) { *P = p012; } var cl_I q12 = v1.q * v2.q; *Q = v0.q * q12; var cl_I b12 = v1.b * v2.b; *B = v0.b * b12; *T = b12 * q12 * v0.p + v0.b * (v2.b * v2.q * p01 + v1.b * p012); break; } case 4: { var cl_pqb_series_term v0 = args.next(); // [N1] var cl_pqb_series_term v1 = args.next(); // [N1+1] var cl_pqb_series_term v2 = args.next(); // [N1+2] var cl_pqb_series_term v3 = args.next(); // [N1+3] var cl_I p01 = v0.p * v1.p; var cl_I p012 = p01 * v2.p; var cl_I p0123 = p012 * v3.p; if (P) { *P = p0123; } var cl_I q23 = v2.q * v3.q; var cl_I q123 = v1.q * q23; *Q = v0.q * q123; var cl_I b01 = v0.b * v1.b; var cl_I b23 = v2.b * v3.b; *B = b01 * b23; *T = b23 * (v1.b * q123 * v0.p + v0.b * q23 * p01) + b01 * (v3.b * v3.q * p012 + v2.b * p0123); break; } default: { var uintC Nm = (N1+N2)/2; // midpoint // Compute left part. var cl_R LP, LQ, LB, LT; eval_pqb_series_aux(N1,Nm,args,&LP,&LQ,&LB,<,trunclen); // Compute right part. var cl_R RP, RQ, RB, RT; eval_pqb_series_aux(Nm,N2,args,(P?&RP:(cl_I*)0),&RQ,&RB,&RT,trunclen); // Put together partial results. if (P) { *P = LP*RP; truncate_precision(*P,trunclen); } *Q = LQ*RQ; truncate_precision(*Q,trunclen); *B = LB*RB; truncate_precision(*B,trunclen); // S = LS + LP/LQ * RS, so T = RB*RQ*LT + LB*LP*RT. *T = RB*RQ*LT + LB*LP*RT; truncate_precision(*T,trunclen); break; } } } template<> const cl_LF eval_rational_series (uintC N, cl_pqb_series_stream& args, uintC len, uintC trunclen) { if (N==0) return cl_I_to_LF(0,len); var cl_R Q, B, T; eval_pqb_series_aux(0,N,args,NULL,&Q,&B,&T,trunclen); return cl_R_to_LF(T,len) / cl_R_to_LF(B*Q,len); } // Bit complexity (if p(n), q(n), a(n), b(n) have length O(log(n))): // O(log(N)^2*M(N)). } // namespace cln