// eval_rational_series(). // General includes. #include "cl_sysdep.h" // Specification. #include "cl_LF_tran.h" // Implementation. #include "cln/lfloat.h" #include "cln/integer.h" #include "cln/exception.h" #include "cl_LF.h" namespace cln { // Subroutine. // Evaluates S = sum(N1 <= n < N2, a(n)/b(n) * (p(N1)...p(n))/(q(N1)...q(n))) // and returns P = p(N1)...p(N2-1), Q = q(N1)...q(N2-1), B = B(N1)...B(N2-1) // and T = B*Q*S (all integers). On entry N1 < N2. // P will not be computed if a NULL pointer is passed. static void eval_qb_series_aux (uintC N1, uintC N2, const cl_qb_series& args, cl_I* Q, cl_I* B, cl_I* T) { switch (N2 - N1) { case 0: throw runtime_exception(); break; case 1: *Q = args.qv[N1]; *B = args.bv[N1]; *T = 1; break; case 2: { *Q = args.qv[N1] * args.qv[N1+1]; *B = args.bv[N1] * args.bv[N1+1]; *T = args.bv[N1+1] * args.qv[N1+1] + args.bv[N1]; break; } case 3: { var cl_I q12 = args.qv[N1+1] * args.qv[N1+2]; *Q = args.qv[N1] * q12; var cl_I b12 = args.bv[N1+1] * args.bv[N1+2]; *B = args.bv[N1] * b12; *T = b12 * q12 + args.bv[N1] * (args.bv[N1+2] * args.qv[N1+2] + args.bv[N1+1]); break; } case 4: { var cl_I q23 = args.qv[N1+2] * args.qv[N1+3]; var cl_I q123 = args.qv[N1+1] * q23; *Q = args.qv[N1] * q123; var cl_I b01 = args.bv[N1] * args.bv[N1+1]; var cl_I b23 = args.bv[N1+2] * args.bv[N1+3]; *B = b01 * b23; *T = b23 * (args.bv[N1+1] * q123 + args.bv[N1] * q23) + b01 * (args.bv[N1+3] * args.qv[N1+3] + args.bv[N1+2]); break; } default: { var uintC Nm = (N1+N2)/2; // midpoint // Compute left part. var cl_I LQ, LB, LT; eval_qb_series_aux(N1,Nm,args,&LQ,&LB,<); // Compute right part. var cl_I RQ, RB, RT; eval_qb_series_aux(Nm,N2,args,&RQ,&RB,&RT); // Put together partial results. *Q = LQ*RQ; *B = LB*RB; // S = LS + 1/LQ * RS, so T = RB*RQ*LT + LB*RT. *T = RB*RQ*LT + LB*RT; break; } } } template<> const cl_LF eval_rational_series (uintC N, const cl_qb_series& args, uintC len) { if (N==0) return cl_I_to_LF(0,len); var cl_I Q, B, T; eval_qb_series_aux(0,N,args,&Q,&B,&T); return cl_I_to_LF(T,len) / cl_I_to_LF(B*Q,len); } static void eval_qb_series_aux (uintC N1, uintC N2, cl_qb_series_stream& args, cl_I* Q, cl_I* B, cl_I* T) { switch (N2 - N1) { case 0: throw runtime_exception(); break; case 1: { var cl_qb_series_term v0 = args.next(); // [N1] *Q = v0.q; *B = v0.b; *T = 1; break; } case 2: { var cl_qb_series_term v0 = args.next(); // [N1] var cl_qb_series_term v1 = args.next(); // [N1+1] *Q = v0.q * v1.q; *B = v0.b * v1.b; *T = v1.b * v1.q + v0.b; break; } case 3: { var cl_qb_series_term v0 = args.next(); // [N1] var cl_qb_series_term v1 = args.next(); // [N1+1] var cl_qb_series_term v2 = args.next(); // [N1+2] var cl_I q12 = v1.q * v2.q; *Q = v0.q * q12; var cl_I b12 = v1.b * v2.b; *B = v0.b * b12; *T = b12 * q12 + v0.b * (v2.b * v2.q + v1.b); break; } case 4: { var cl_qb_series_term v0 = args.next(); // [N1] var cl_qb_series_term v1 = args.next(); // [N1+1] var cl_qb_series_term v2 = args.next(); // [N1+2] var cl_qb_series_term v3 = args.next(); // [N1+3] var cl_I q23 = v2.q * v3.q; var cl_I q123 = v1.q * q23; *Q = v0.q * q123; var cl_I b01 = v0.b * v1.b; var cl_I b23 = v2.b * v3.b; *B = b01 * b23; *T = b23 * (v1.b * q123 + v0.b * q23) + b01 * (v3.b * v3.q + v2.b); break; } default: { var uintC Nm = (N1+N2)/2; // midpoint // Compute left part. var cl_I LQ, LB, LT; eval_qb_series_aux(N1,Nm,args,&LQ,&LB,<); // Compute right part. var cl_I RQ, RB, RT; eval_qb_series_aux(Nm,N2,args,&RQ,&RB,&RT); // Put together partial results. *Q = LQ*RQ; *B = LB*RB; // S = LS + 1/LQ * RS, so T = RB*RQ*LT + LB*RT. *T = RB*RQ*LT + LB*RT; break; } } } template<> const cl_LF eval_rational_series (uintC N, cl_qb_series_stream& args, uintC len) { if (N==0) return cl_I_to_LF(0,len); var cl_I Q, B, T; eval_qb_series_aux(0,N,args,&Q,&B,&T); return cl_I_to_LF(T,len) / cl_I_to_LF(B*Q,len); } // Bit complexity (if p(n), q(n), a(n), b(n) have length O(log(n))): // O(log(N)^2*M(N)). } // namespace cln