]> www.ginac.de Git - cln.git/blobdiff - include/cln/univpoly_rational.h
* All Files have been modified for inclusion of namespace cln;
[cln.git] / include / cln / univpoly_rational.h
diff --git a/include/cln/univpoly_rational.h b/include/cln/univpoly_rational.h
new file mode 100644 (file)
index 0000000..f9ff026
--- /dev/null
@@ -0,0 +1,230 @@
+// Univariate Polynomials over the rational numbers.
+
+#ifndef _CL_UNIVPOLY_RATIONAL_H
+#define _CL_UNIVPOLY_RATIONAL_H
+
+#include "cln/ring.h"
+#include "cln/univpoly.h"
+#include "cln/number.h"
+#include "cln/rational_class.h"
+#include "cln/integer_class.h"
+#include "cln/rational_ring.h"
+
+namespace cln {
+
+// Normal univariate polynomials with stricter static typing:
+// `cl_RA' instead of `cl_ring_element'.
+
+#ifdef notyet
+
+typedef cl_UP_specialized<cl_RA> cl_UP_RA;
+typedef cl_univpoly_specialized_ring<cl_RA> cl_univpoly_rational_ring;
+//typedef cl_heap_univpoly_specialized_ring<cl_RA> cl_heap_univpoly_rational_ring;
+
+#else
+
+class cl_heap_univpoly_rational_ring;
+
+class cl_univpoly_rational_ring : public cl_univpoly_ring {
+public:
+       // Default constructor.
+       cl_univpoly_rational_ring () : cl_univpoly_ring () {}
+       // Copy constructor.
+       cl_univpoly_rational_ring (const cl_univpoly_rational_ring&);
+       // Assignment operator.
+       cl_univpoly_rational_ring& operator= (const cl_univpoly_rational_ring&);
+       // Automatic dereferencing.
+       cl_heap_univpoly_rational_ring* operator-> () const
+       { return (cl_heap_univpoly_rational_ring*)heappointer; }
+};
+// Copy constructor and assignment operator.
+CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_rational_ring,cl_univpoly_ring)
+CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_rational_ring,cl_univpoly_rational_ring)
+
+class cl_UP_RA : public cl_UP {
+public:
+       const cl_univpoly_rational_ring& ring () const { return The(cl_univpoly_rational_ring)(_ring); }
+       // Conversion.
+       CL_DEFINE_CONVERTER(cl_ring_element)
+       // Destructive modification.
+       void set_coeff (uintL index, const cl_RA& y);
+       void finalize();
+       // Evaluation.
+       const cl_RA operator() (const cl_RA& y) const;
+public:        // Ability to place an object at a given address.
+       void* operator new (size_t size) { return malloc_hook(size); }
+       void* operator new (size_t size, cl_UP_RA* ptr) { (void)size; return ptr; }
+       void operator delete (void* ptr) { free_hook(ptr); }
+};
+
+class cl_heap_univpoly_rational_ring : public cl_heap_univpoly_ring {
+       SUBCLASS_cl_heap_univpoly_ring()
+       // High-level operations.
+       void fprint (cl_ostream stream, const cl_UP_RA& x)
+       {
+               cl_heap_univpoly_ring::fprint(stream,x);
+       }
+       cl_boolean equal (const cl_UP_RA& x, const cl_UP_RA& y)
+       {
+               return cl_heap_univpoly_ring::equal(x,y);
+       }
+       const cl_UP_RA zero ()
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::zero());
+       }
+       cl_boolean zerop (const cl_UP_RA& x)
+       {
+               return cl_heap_univpoly_ring::zerop(x);
+       }
+       const cl_UP_RA plus (const cl_UP_RA& x, const cl_UP_RA& y)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::plus(x,y));
+       }
+       const cl_UP_RA minus (const cl_UP_RA& x, const cl_UP_RA& y)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::minus(x,y));
+       }
+       const cl_UP_RA uminus (const cl_UP_RA& x)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::uminus(x));
+       }
+       const cl_UP_RA one ()
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::one());
+       }
+       const cl_UP_RA canonhom (const cl_I& x)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::canonhom(x));
+       }
+       const cl_UP_RA mul (const cl_UP_RA& x, const cl_UP_RA& y)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::mul(x,y));
+       }
+       const cl_UP_RA square (const cl_UP_RA& x)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::square(x));
+       }
+       const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::expt_pos(x,y));
+       }
+       const cl_UP_RA scalmul (const cl_RA& x, const cl_UP_RA& y)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::scalmul(cl_ring_element(cl_RA_ring,x),y));
+       }
+       sintL degree (const cl_UP_RA& x)
+       {
+               return cl_heap_univpoly_ring::degree(x);
+       }
+       const cl_UP_RA monomial (const cl_RA& x, uintL e)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_RA_ring,x),e));
+       }
+       const cl_RA coeff (const cl_UP_RA& x, uintL index)
+       {
+               return The(cl_RA)(cl_heap_univpoly_ring::coeff(x,index));
+       }
+       const cl_UP_RA create (sintL deg)
+       {
+               return The2(cl_UP_RA)(cl_heap_univpoly_ring::create(deg));
+       }
+       void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y)
+       {
+               cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_RA_ring,y));
+       }
+       void finalize (cl_UP_RA& x)
+       {
+               cl_heap_univpoly_ring::finalize(x);
+       }
+       const cl_RA eval (const cl_UP_RA& x, const cl_RA& y)
+       {
+               return The(cl_RA)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_RA_ring,y)));
+       }
+private:
+       // No need for any constructors.
+       cl_heap_univpoly_rational_ring ();
+};
+
+// Lookup of polynomial rings.
+inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r)
+{ return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r)); }
+inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r, const cl_symbol& varname)
+{ return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r,varname)); }
+
+// Operations on polynomials.
+
+// Add.
+inline const cl_UP_RA operator+ (const cl_UP_RA& x, const cl_UP_RA& y)
+       { return x.ring()->plus(x,y); }
+
+// Negate.
+inline const cl_UP_RA operator- (const cl_UP_RA& x)
+       { return x.ring()->uminus(x); }
+
+// Subtract.
+inline const cl_UP_RA operator- (const cl_UP_RA& x, const cl_UP_RA& y)
+       { return x.ring()->minus(x,y); }
+
+// Multiply.
+inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_UP_RA& y)
+       { return x.ring()->mul(x,y); }
+
+// Squaring.
+inline const cl_UP_RA square (const cl_UP_RA& x)
+       { return x.ring()->square(x); }
+
+// Exponentiation x^y, where y > 0.
+inline const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y)
+       { return x.ring()->expt_pos(x,y); }
+
+// Scalar multiplication.
+#if 0 // less efficient
+inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y)
+       { return y.ring()->mul(y.ring()->canonhom(x),y); }
+inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y)
+       { return x.ring()->mul(x.ring()->canonhom(y),x); }
+#endif
+inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y)
+       { return y.ring()->scalmul(x,y); }
+inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y)
+       { return x.ring()->scalmul(y,x); }
+inline const cl_UP_RA operator* (const cl_RA& x, const cl_UP_RA& y)
+       { return y.ring()->scalmul(x,y); }
+inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_RA& y)
+       { return x.ring()->scalmul(y,x); }
+
+// Coefficient.
+inline const cl_RA coeff (const cl_UP_RA& x, uintL index)
+       { return x.ring()->coeff(x,index); }
+
+// Destructive modification.
+inline void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y)
+       { x.ring()->set_coeff(x,index,y); }
+inline void finalize (cl_UP_RA& x)
+       { x.ring()->finalize(x); }
+inline void cl_UP_RA::set_coeff (uintL index, const cl_RA& y)
+       { ring()->set_coeff(*this,index,y); }
+inline void cl_UP_RA::finalize ()
+       { ring()->finalize(*this); }
+
+// Evaluation. (No extension of the base ring allowed here for now.)
+inline const cl_RA cl_UP_RA::operator() (const cl_RA& y) const
+{
+       return ring()->eval(*this,y);
+}
+
+// Derivative.
+inline const cl_UP_RA deriv (const cl_UP_RA& x)
+       { return The2(cl_UP_RA)(deriv((const cl_UP&)x)); }
+
+#endif
+
+CL_REQUIRE(cl_RA_ring)
+
+
+// Returns the n-th Legendre polynomial (n >= 0).
+extern const cl_UP_RA legendre (sintL n);
+
+}  // namespace cln
+
+#endif /* _CL_UNIVPOLY_RATIONAL_H */