/** @file idx.cpp * * Implementation of GiNaC's indices. */ /* * GiNaC Copyright (C) 1999-2016 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "idx.h" #include "symbol.h" #include "lst.h" #include "relational.h" #include "operators.h" #include "archive.h" #include "utils.h" #include "hash_seed.h" #include #include #include namespace GiNaC { GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(idx, basic, print_func(&idx::do_print). print_func(&idx::do_print_latex). print_func(&idx::do_print_csrc). print_func(&idx::do_print_tree)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(varidx, idx, print_func(&varidx::do_print). print_func(&varidx::do_print_latex). print_func(&varidx::do_print_tree)) GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(spinidx, varidx, print_func(&spinidx::do_print). print_func(&spinidx::do_print_latex). print_func(&spinidx::do_print_tree)) ////////// // default constructor ////////// idx::idx() {} varidx::varidx() : covariant(false) { } spinidx::spinidx() : dotted(false) { } ////////// // other constructors ////////// idx::idx(const ex & v, const ex & d) : value(v), dim(d) { if (is_dim_numeric()) if (!dim.info(info_flags::posint)) throw(std::invalid_argument("dimension of space must be a positive integer")); } varidx::varidx(const ex & v, const ex & d, bool cov) : inherited(v, d), covariant(cov) { } spinidx::spinidx(const ex & v, const ex & d, bool cov, bool dot) : inherited(v, d, cov), dotted(dot) { } ////////// // archiving ////////// void idx::read_archive(const archive_node& n, lst& sym_lst) { inherited::read_archive(n, sym_lst); n.find_ex("value", value, sym_lst); n.find_ex("dim", dim, sym_lst); } GINAC_BIND_UNARCHIVER(idx); void varidx::read_archive(const archive_node& n, lst& sym_lst) { inherited::read_archive(n, sym_lst); n.find_bool("covariant", covariant); } GINAC_BIND_UNARCHIVER(varidx); void spinidx::read_archive(const archive_node& n, lst& sym_lst) { inherited::read_archive(n, sym_lst); n.find_bool("dotted", dotted); } GINAC_BIND_UNARCHIVER(spinidx); void idx::archive(archive_node &n) const { inherited::archive(n); n.add_ex("value", value); n.add_ex("dim", dim); } void varidx::archive(archive_node &n) const { inherited::archive(n); n.add_bool("covariant", covariant); } void spinidx::archive(archive_node &n) const { inherited::archive(n); n.add_bool("dotted", dotted); } ////////// // functions overriding virtual functions from base classes ////////// void idx::print_index(const print_context & c, unsigned level) const { bool need_parens = !(is_exactly_a(value) || is_a(value)); if (need_parens) c.s << "("; value.print(c); if (need_parens) c.s << ")"; if (c.options & print_options::print_index_dimensions) { c.s << "["; dim.print(c); c.s << "]"; } } void idx::do_print(const print_context & c, unsigned level) const { c.s << "."; print_index(c, level); } void idx::do_print_latex(const print_latex & c, unsigned level) const { c.s << "{"; print_index(c, level); c.s << "}"; } void idx::do_print_csrc(const print_csrc & c, unsigned level) const { c.s << "["; if (value.info(info_flags::integer)) c.s << ex_to(value).to_int(); else value.print(c); c.s << "]"; } void idx::do_print_tree(const print_tree & c, unsigned level) const { c.s << std::string(level, ' ') << class_name() << " @" << this << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << std::endl; value.print(c, level + c.delta_indent); dim.print(c, level + c.delta_indent); } void varidx::do_print(const print_context & c, unsigned level) const { if (covariant) c.s << "."; else c.s << "~"; print_index(c, level); } void varidx::do_print_tree(const print_tree & c, unsigned level) const { c.s << std::string(level, ' ') << class_name() << " @" << this << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << (covariant ? ", covariant" : ", contravariant") << std::endl; value.print(c, level + c.delta_indent); dim.print(c, level + c.delta_indent); } void spinidx::do_print(const print_context & c, unsigned level) const { if (covariant) c.s << "."; else c.s << "~"; if (dotted) c.s << "*"; print_index(c, level); } void spinidx::do_print_latex(const print_latex & c, unsigned level) const { if (dotted) c.s << "\\dot{"; else c.s << "{"; print_index(c, level); c.s << "}"; } void spinidx::do_print_tree(const print_tree & c, unsigned level) const { c.s << std::string(level, ' ') << class_name() << " @" << this << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec << (covariant ? ", covariant" : ", contravariant") << (dotted ? ", dotted" : ", undotted") << std::endl; value.print(c, level + c.delta_indent); dim.print(c, level + c.delta_indent); } bool idx::info(unsigned inf) const { switch(inf) { case info_flags::idx: case info_flags::has_indices: return true; } return inherited::info(inf); } size_t idx::nops() const { // don't count the dimension as that is not really a sub-expression return 1; } ex idx::op(size_t i) const { GINAC_ASSERT(i == 0); return value; } ex idx::map(map_function & f) const { const ex &mapped_value = f(value); if (are_ex_trivially_equal(value, mapped_value)) return *this; else { idx *copy = duplicate(); copy->setflag(status_flags::dynallocated); copy->clearflag(status_flags::hash_calculated); copy->value = mapped_value; return *copy; } } /** Returns order relation between two indices of the same type. The order * must be such that dummy indices lie next to each other. */ int idx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const idx &o = static_cast(other); int cmpval = value.compare(o.value); if (cmpval) return cmpval; return dim.compare(o.dim); } bool idx::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const idx &o = static_cast(other); return dim.is_equal(o.dim); } int varidx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const varidx &o = static_cast(other); int cmpval = inherited::compare_same_type(other); if (cmpval) return cmpval; // Check variance last so dummy indices will end up next to each other if (covariant != o.covariant) return covariant ? -1 : 1; return 0; } bool varidx::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const varidx &o = static_cast(other); if (covariant != o.covariant) return false; return inherited::match_same_type(other); } int spinidx::compare_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const spinidx &o = static_cast(other); // Check dottedness first so dummy indices will end up next to each other if (dotted != o.dotted) return dotted ? -1 : 1; int cmpval = inherited::compare_same_type(other); if (cmpval) return cmpval; return 0; } bool spinidx::match_same_type(const basic & other) const { GINAC_ASSERT(is_a(other)); const spinidx &o = static_cast(other); if (dotted != o.dotted) return false; return inherited::match_same_type(other); } unsigned idx::calchash() const { // NOTE: The code in simplify_indexed() assumes that canonically // ordered sequences of indices have the two members of dummy index // pairs lying next to each other. The hash values for indices must // be devised accordingly. The easiest (only?) way to guarantee the // desired ordering is to make indices with the same value have equal // hash keys. That is, the hash values must not depend on the index // dimensions or other attributes (variance etc.). // The compare_same_type() methods will take care of the rest. unsigned v = make_hash_seed(typeid(*this)); v = rotate_left(v); v ^= value.gethash(); // Store calculated hash value only if object is already evaluated if (flags & status_flags::evaluated) { setflag(status_flags::hash_calculated); hashvalue = v; } return v; } /** By default, basic::evalf would evaluate the index value but we don't want * a.1 to become a.(1.0). */ ex idx::evalf(int level) const { return *this; } ex idx::subs(const exmap & m, unsigned options) const { // First look for index substitutions exmap::const_iterator it = m.find(*this); if (it != m.end()) { // Substitution index->index if (is_a(it->second) || (options & subs_options::really_subs_idx)) return it->second; // Otherwise substitute value idx *i_copy = duplicate(); i_copy->value = it->second; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } // None, substitute objects in value (not in dimension) const ex &subsed_value = value.subs(m, options); if (are_ex_trivially_equal(value, subsed_value)) return *this; idx *i_copy = duplicate(); i_copy->value = subsed_value; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } /** Implementation of ex::diff() for an index always returns 0. * * @see ex::diff */ ex idx::derivative(const symbol & s) const { return _ex0; } ////////// // new virtual functions ////////// bool idx::is_dummy_pair_same_type(const basic & other) const { const idx &o = static_cast(other); // Only pure symbols form dummy pairs, "2n+1" doesn't if (!is_a(value)) return false; // Value must be equal, of course if (!value.is_equal(o.value)) return false; // Dimensions need not be equal but must be comparable (so we can // determine the minimum dimension of contractions) if (dim.is_equal(o.dim)) return true; return is_exactly_a(dim) || is_exactly_a(o.dim); } bool varidx::is_dummy_pair_same_type(const basic & other) const { const varidx &o = static_cast(other); // Variance must be opposite if (covariant == o.covariant) return false; return inherited::is_dummy_pair_same_type(other); } bool spinidx::is_dummy_pair_same_type(const basic & other) const { const spinidx &o = static_cast(other); // Dottedness must be the same if (dotted != o.dotted) return false; return inherited::is_dummy_pair_same_type(other); } ////////// // non-virtual functions ////////// ex idx::replace_dim(const ex & new_dim) const { idx *i_copy = duplicate(); i_copy->dim = new_dim; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ex idx::minimal_dim(const idx & other) const { return GiNaC::minimal_dim(dim, other.dim); } ex varidx::toggle_variance() const { varidx *i_copy = duplicate(); i_copy->covariant = !i_copy->covariant; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ex spinidx::toggle_dot() const { spinidx *i_copy = duplicate(); i_copy->dotted = !i_copy->dotted; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ex spinidx::toggle_variance_dot() const { spinidx *i_copy = duplicate(); i_copy->covariant = !i_copy->covariant; i_copy->dotted = !i_copy->dotted; i_copy->clearflag(status_flags::hash_calculated); return i_copy->setflag(status_flags::dynallocated); } ////////// // global functions ////////// bool is_dummy_pair(const idx & i1, const idx & i2) { // The indices must be of exactly the same type if (typeid(i1) != typeid(i2)) return false; // Same type, let the indices decide whether they are paired return i1.is_dummy_pair_same_type(i2); } bool is_dummy_pair(const ex & e1, const ex & e2) { // The expressions must be indices if (!is_a(e1) || !is_a(e2)) return false; return is_dummy_pair(ex_to(e1), ex_to(e2)); } void find_free_and_dummy(exvector::const_iterator it, exvector::const_iterator itend, exvector & out_free, exvector & out_dummy) { out_free.clear(); out_dummy.clear(); // No indices? Then do nothing if (it == itend) return; // Only one index? Then it is a free one if it's not numeric if (itend - it == 1) { if (ex_to(*it).is_symbolic()) out_free.push_back(*it); return; } // Sort index vector. This will cause dummy indices come to lie next // to each other (because the sort order is defined to guarantee this). exvector v(it, itend); shaker_sort(v.begin(), v.end(), ex_is_less(), ex_swap()); // Find dummy pairs and free indices it = v.begin(); itend = v.end(); exvector::const_iterator last = it++; while (it != itend) { if (is_dummy_pair(*it, *last)) { out_dummy.push_back(*last); it++; if (it == itend) return; } else { if (!it->is_equal(*last) && ex_to(*last).is_symbolic()) out_free.push_back(*last); } last = it++; } if (ex_to(*last).is_symbolic()) out_free.push_back(*last); } ex minimal_dim(const ex & dim1, const ex & dim2) { if (dim1.is_equal(dim2) || dim1 < dim2 || (is_exactly_a(dim1) && !is_a(dim2))) return dim1; else if (dim1 > dim2 || (!is_a(dim1) && is_exactly_a(dim2))) return dim2; else { std::ostringstream s; s << "minimal_dim(): index dimensions " << dim1 << " and " << dim2 << " cannot be ordered"; throw (std::runtime_error(s.str())); } } } // namespace GiNaC