X-Git-Url: https://ginac.de/ginac.git//ginac.git?a=blobdiff_plain;f=ginac%2Finifcns.h;h=a477769ae85560eef73234f82f65ea5cb1a3afae;hb=aed514f534cc6b4438822c1fcf80c203a828a94c;hp=426a7e09172bb26c1b7cbe91c62cc61f932f2ced;hpb=a450af1f438d53e924a074c936c648991eddfc71;p=ginac.git diff --git a/ginac/inifcns.h b/ginac/inifcns.h index 426a7e09..a477769a 100644 --- a/ginac/inifcns.h +++ b/ginac/inifcns.h @@ -3,7 +3,7 @@ * Interface to GiNaC's initially known functions. */ /* - * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2022 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,20 +17,33 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#ifndef __GINAC_INIFCNS_H__ -#define __GINAC_INIFCNS_H__ +#ifndef GINAC_INIFCNS_H +#define GINAC_INIFCNS_H +#include "numeric.h" #include "function.h" #include "ex.h" namespace GiNaC { +/** Complex conjugate. */ +DECLARE_FUNCTION_1P(conjugate_function) + +/** Real part. */ +DECLARE_FUNCTION_1P(real_part_function) + +/** Imaginary part. */ +DECLARE_FUNCTION_1P(imag_part_function) + /** Absolute value. */ DECLARE_FUNCTION_1P(abs) +/** Step function. */ +DECLARE_FUNCTION_1P(step) + /** Complex sign. */ DECLARE_FUNCTION_1P(csgn) @@ -105,36 +118,39 @@ inline function zeta(const T1& p1, const T2& p2) { return function(zeta2_SERIAL::serial, ex(p1), ex(p2)); } class zeta_SERIAL; -template<> inline bool is_the_function(const ex& x) +template<> inline bool is_the_function(const ex& x) { return is_the_function(x) || is_the_function(x); } -/** Polylogarithm and multiple polylogarithm. */ -DECLARE_FUNCTION_2P(Li) - -/** Nielsen's generalized polylogarithm. */ -DECLARE_FUNCTION_3P(S) - // overloading at work: we cannot use the macros here -/** Harmonic polylogarithm with only positive parameters. */ -class H2_SERIAL { public: static unsigned serial; }; +/** Generalized multiple polylogarithm. */ +class G2_SERIAL { public: static unsigned serial; }; template -inline function H(const T1& p1, const T2& p2) { - return function(H2_SERIAL::serial, ex(p1), ex(p2)); +inline function G(const T1& x, const T2& y) { + return function(G2_SERIAL::serial, ex(x), ex(y)); } -/** Harmonic polylogarithm with signed parameters. */ -class H3_SERIAL { public: static unsigned serial; }; +/** Generalized multiple polylogarithm with explicit imaginary parts. */ +class G3_SERIAL { public: static unsigned serial; }; template -inline function H(const T1& p1, const T2& p2, const T3& p3) { - return function(H3_SERIAL::serial, ex(p1), ex(p2), ex(p3)); +inline function G(const T1& x, const T2& s, const T3& y) { + return function(G3_SERIAL::serial, ex(x), ex(s), ex(y)); } -class H_SERIAL; -template<> inline bool is_the_function(const ex& x) +class G_SERIAL; +template<> inline bool is_the_function(const ex& x) { - return is_the_function(x) || is_the_function(x); + return is_the_function(x) || is_the_function(x); } +/** Polylogarithm and multiple polylogarithm. */ +DECLARE_FUNCTION_2P(Li) + +/** Nielsen's generalized polylogarithm. */ +DECLARE_FUNCTION_3P(S) + +/** Harmonic polylogarithm. */ +DECLARE_FUNCTION_2P(H) + /** Gamma-function. */ DECLARE_FUNCTION_1P(lgamma) DECLARE_FUNCTION_1P(tgamma) @@ -156,11 +172,37 @@ inline function psi(const T1 & p1, const T2 & p2) { return function(psi2_SERIAL::serial, ex(p1), ex(p2)); } class psi_SERIAL; -template<> inline bool is_the_function(const ex & x) +template<> inline bool is_the_function(const ex & x) { return is_the_function(x) || is_the_function(x); } +/** Complete elliptic integral of the first kind. */ +DECLARE_FUNCTION_1P(EllipticK) + +/** Complete elliptic integral of the second kind. */ +DECLARE_FUNCTION_1P(EllipticE) + +// overloading at work: we cannot use the macros here +/** Iterated integral. */ +class iterated_integral2_SERIAL { public: static unsigned serial; }; +template +inline function iterated_integral(const T1& kernel_lst, const T2& lambda) { + return function(iterated_integral2_SERIAL::serial, ex(kernel_lst), ex(lambda)); +} +/** Iterated integral with explicit truncation. */ +class iterated_integral3_SERIAL { public: static unsigned serial; }; +template +inline function iterated_integral(const T1& kernel_lst, const T2& lambda, const T3& N_trunc) { + return function(iterated_integral3_SERIAL::serial, ex(kernel_lst), ex(lambda), ex(N_trunc)); +} +class iterated_integral_SERIAL; +template<> inline bool is_the_function(const ex& x) +{ + return is_the_function(x) || is_the_function(x); +} + + /** Factorial function. */ DECLARE_FUNCTION_1P(factorial) @@ -172,6 +214,17 @@ DECLARE_FUNCTION_1P(Order) ex lsolve(const ex &eqns, const ex &symbols, unsigned options = solve_algo::automatic); +/** Find a real root of real-valued function f(x) numerically within a given + * interval. The function must change sign across interval. Uses Newton- + * Raphson method combined with bisection in order to guarantee convergence. + * + * @param f Function f(x) + * @param x Symbol f(x) + * @param x1 lower interval limit + * @param x2 upper interval limit + * @exception runtime_error (if interval is invalid). */ +const numeric fsolve(const ex& f, const symbol& x, const numeric& x1, const numeric& x2); + /** Check whether a function is the Order (O(n)) function. */ inline bool is_order_function(const ex & e) { @@ -181,8 +234,8 @@ inline bool is_order_function(const ex & e) /** Converts a given list containing parameters for H in Remiddi/Vermaseren notation into * the corresponding GiNaC functions. */ -ex convert_H_notation(const ex& parameterlst, const ex& arg); +ex convert_H_to_Li(const ex& parameterlst, const ex& arg); } // namespace GiNaC -#endif // ndef __GINAC_INIFCNS_H__ +#endif // ndef GINAC_INIFCNS_H