[GiNaC-devel] End of the patch

Vladimir Kisil kisilv at maths.leeds.ac.uk
Thu Apr 28 18:18:37 CEST 2005


 This is the end of previous patch.
-- 
Vladimir V. Kisil     email: kisilv at maths.leeds.ac.uk
--                      www: http://maths.leeds.ac.uk/~kisilv/

Index: check/exam_clifford.cpp
===================================================================
RCS file: /home/cvs/GiNaC/check/exam_clifford.cpp,v
retrieving revision 1.24
diff -r1.24 exam_clifford.cpp
24a25,26
> const numeric half(1, 2);
> 
27c29
< 	ex e = e1 - e2;
---
> 	ex e = normal(e1 - e2);
29,30c31,32
< 		clog << e1 << "-" << e2 << " erroneously returned "
< 		     << e << " instead of 0" << endl;
---
> 		clog << "(" << e1 << ") - (" << e2 << ") erroneously returned "
> 			 << e << " instead of 0" << endl;
38c40
< 	ex e = simplify_indexed(e1) - e2;
---
> 	ex e = normal(simplify_indexed(e1) - e2);
40,41c42,43
< 		clog << "simplify_indexed(" << e1 << ")-" << e2 << " erroneously returned "
< 		     << e << " instead of 0" << endl;
---
> 		clog << "simplify_indexed(" << e1 << ") - (" << e2 << ") erroneously returned "
> 			 << e << " instead of 0" << endl;
46a49,88
> static unsigned check_equal_lst(const ex &e1, const ex &e2)
> {
> 	for(int i = 0; i++; i < e1.nops()) {
> 		ex e = e1.op(i) - e2.op(i);
> 		if (!e.is_zero()) {
> 			clog << "(" << e1 << ") - (" << e2 << ") erroneously returned "
> 				 << e << " instead of 0 (in the entry " << i  << ")" << endl;
> 			return 1;
> 		}
> 	}
> 	return 0;
> }
> 
> static unsigned check_equal_simplify_term(const ex &e1, const ex &e2, varidx &mu)
> {
> 	ex e = expand_dummy_sum(normal(simplify_indexed(e1) - e2), true);
> 
>  	for (int j=0; j<4; j++) {
> 		ex esub = e.subs(lst(mu == idx(j, mu.get_dim()), mu.toggle_variance() == idx(j, mu.get_dim())));
> 		if (!(canonicalize_clifford(esub).is_zero())) {
> 			clog << "simplify_indexed(" << e1 << ") - (" << e2 << ") erroneously returned "
> 				 << canonicalize_clifford(esub) << " instead of 0 for mu=" << j << endl;
> 			return 1;
> 		}
> 	}
> 	return 0;
> }
> 
> static unsigned check_equal_simplify_term2(const ex &e1, const ex &e2)
> {
>  	ex e = expand_dummy_sum(normal(simplify_indexed(e1) - e2), true);
> 	if (!(canonicalize_clifford(e).is_zero())) {
> 		clog << "simplify_indexed(" << e1 << ") - (" << e2 << ") erroneously returned "
> 			 << canonicalize_clifford(e) << " instead of 0" << endl;
> 		return 1;
> 	}
> 	return 0;
> }
> 
> 
264a307
> 
271c314,316
< 	ex G = A;
---
> 	matrix A_symm(4,4),  A2(4, 4);
> 	A_symm = A.add(A.transpose()).mul(half);
> 	A2 = A_symm.mul(A_symm);
273,274d317
< 	matrix A2(4, 4);
< 	A2 = A.mul(A);
276c319
< 
---
> 	bool anticommuting = ex_to<clifford>(clifford_unit(nu, A)).is_anticommuting();
280,281c323,324
< 	e = dirac_ONE() * clifford_unit(mu, G) * dirac_ONE();
< 	result += check_equal(e, clifford_unit(mu, G));
---
> 	e = dirac_ONE(2) * clifford_unit(mu, A, 2) * dirac_ONE(2);
> 	result += check_equal(e, clifford_unit(mu, A, 2));
283,284c326,327
< 	e = clifford_unit(varidx(2, 4), G) * clifford_unit(varidx(1, 4), G)
< 	  * clifford_unit(varidx(1, 4), G) * clifford_unit(varidx(2, 4), G);
---
> 	e = clifford_unit(idx(2, 4), A) * clifford_unit(idx(1, 4), A)
> 	  * clifford_unit(idx(1, 4), A) * clifford_unit(idx(2, 4), A);
287c330,334
< 	e = clifford_unit(nu, G) * clifford_unit(nu.toggle_variance(), G);
---
> 	e = clifford_unit(varidx(2, 4), A) * clifford_unit(varidx(1, 4), A)
> 	  * clifford_unit(varidx(1, 4), A) * clifford_unit(varidx(2, 4), A);
> 	result += check_equal(e, A(1, 1) * A(2, 2) * dirac_ONE());
> 
> 	e = clifford_unit(nu, A) * clifford_unit(nu.toggle_variance(), A);
290,291c337,338
< 	e = clifford_unit(nu, G) * clifford_unit(nu, G);
< 	result += check_equal_simplify(e, indexed(G, sy_symm(), nu, nu) * dirac_ONE());
---
> 	e = clifford_unit(nu, A) * clifford_unit(nu, A);
> 	result += check_equal_simplify(e, indexed(A_symm, sy_symm(), nu, nu) * dirac_ONE());
293,294c340,341
< 	e = clifford_unit(nu, G) * clifford_unit(nu.toggle_variance(), G) * clifford_unit(mu, G);
< 	result += check_equal_simplify(e, A.trace() * clifford_unit(mu, G));
---
> 	e = clifford_unit(nu, A) * clifford_unit(nu.toggle_variance(), A) * clifford_unit(mu, A);
> 	result += check_equal_simplify(e, A.trace() * clifford_unit(mu, A));
296,297c343,347
< 	e = clifford_unit(nu, G) * clifford_unit(mu, G) * clifford_unit(nu.toggle_variance(), G);
< 	result += check_equal_simplify(e, 2*indexed(G, sy_symm(), mu, mu)*clifford_unit(mu, G) - A.trace()*clifford_unit(mu, G));
---
> 	e = clifford_unit(nu, A) * clifford_unit(mu, A) * clifford_unit(nu.toggle_variance(), A);
> 	if (anticommuting)
> 		result += check_equal_simplify(e, 2*indexed(A_symm, sy_symm(), mu, mu)*clifford_unit(mu, A) - A.trace()*clifford_unit(mu, A));
> 	
> 	result += check_equal_simplify_term(e,  2 * indexed(A_symm, sy_symm(), nu.toggle_variance(), mu) *clifford_unit(nu, A)-A.trace()*clifford_unit(mu, A), mu);
299,300c349,350
< 	e = clifford_unit(nu, G) * clifford_unit(nu.toggle_variance(), G)
< 	  * clifford_unit(mu, G) * clifford_unit(mu.toggle_variance(), G);
---
> 	e = clifford_unit(nu, A) * clifford_unit(nu.toggle_variance(), A)
> 	  * clifford_unit(mu, A) * clifford_unit(mu.toggle_variance(), A);
303,304c353,354
< 	e = clifford_unit(mu, G) * clifford_unit(nu, G)
< 	  * clifford_unit(nu.toggle_variance(), G) * clifford_unit(mu.toggle_variance(), G);
---
> 	e = clifford_unit(mu, A) * clifford_unit(nu, A)
> 	  * clifford_unit(nu.toggle_variance(), A) * clifford_unit(mu.toggle_variance(), A);
307,323c357,370
< 	e = clifford_unit(mu, G) * clifford_unit(nu, G)
< 	  * clifford_unit(mu.toggle_variance(), G) * clifford_unit(nu.toggle_variance(), G);
< 	result += check_equal_simplify(e, 2*A2.trace()*dirac_ONE() - pow(A.trace(), 2)*dirac_ONE());
< 
< 	e = clifford_unit(mu.toggle_variance(), G) * clifford_unit(nu, G)
< 	  * clifford_unit(mu, G) * clifford_unit(nu.toggle_variance(), G);
< 	result += check_equal_simplify(e, 2*A2.trace()*dirac_ONE() - pow(A.trace(), 2)*dirac_ONE());
< 
< 	e = clifford_unit(nu.toggle_variance(), G) * clifford_unit(rho.toggle_variance(), G)
< 	  * clifford_unit(mu, G) * clifford_unit(rho, G) * clifford_unit(nu, G);
< 	e = e.simplify_indexed().collect(clifford_unit(mu, G));
< 	result += check_equal(e, (pow(A.trace(), 2)+4-4*A.trace()*indexed(A, mu, mu)) * clifford_unit(mu, G));
< 
< 	e = clifford_unit(nu.toggle_variance(), G) * clifford_unit(rho, G)
< 	  * clifford_unit(mu, G) * clifford_unit(rho.toggle_variance(), G) * clifford_unit(nu, G);
< 	e = e.simplify_indexed().collect(clifford_unit(mu, G));
< 	result += check_equal(e, (pow(A.trace(), 2)+4-4*A.trace()*indexed(A, mu, mu))* clifford_unit(mu, G));
---
> 	e = clifford_unit(mu, A) * clifford_unit(nu, A)
> 	  * clifford_unit(mu.toggle_variance(), A) * clifford_unit(nu.toggle_variance(), A);
> 	if (anticommuting) 
> 		result += check_equal_simplify(e, 2*A2.trace()*dirac_ONE() - pow(A.trace(), 2)*dirac_ONE());
> 
> 	result += check_equal_simplify_term2(e, 2*indexed(A_symm, sy_symm(), nu.toggle_variance(), mu.toggle_variance()) * clifford_unit(mu, A) * clifford_unit(nu, A) - pow(A.trace(), 2)*dirac_ONE());
> 
> 	e = clifford_unit(mu.toggle_variance(), A) * clifford_unit(nu, A)
> 	  * clifford_unit(mu, A) * clifford_unit(nu.toggle_variance(), A);
> 	if (anticommuting) {
> 		result += check_equal_simplify(e, 2*A2.trace()*dirac_ONE() - pow(A.trace(), 2)*dirac_ONE());
> 		e1 = remove_dirac_ONE(simplify_indexed(e));
> 		result += check_equal(e1, 2*A2.trace() - pow(A.trace(), 2));
> 	}
325,327c372
< 	// canonicalize_clifford() checks
< 	e = clifford_unit(mu, G) * clifford_unit(nu, G) + clifford_unit(nu, G) * clifford_unit(mu, G);
< 	result += check_equal(canonicalize_clifford(e), 2*dirac_ONE()*indexed(G, sy_symm(), mu, nu));
---
> 	result += check_equal_simplify_term2(e, 2*indexed(A_symm, nu, mu) * clifford_unit(mu.toggle_variance(), A) * clifford_unit(nu.toggle_variance(), A) - pow(A.trace(), 2)*dirac_ONE());
329,338c374,406
< 	e = (clifford_unit(mu, G) * clifford_unit(nu, G) * clifford_unit(lam, G)
< 	   + clifford_unit(nu, G) * clifford_unit(lam, G) * clifford_unit(mu, G)
< 	   + clifford_unit(lam, G) * clifford_unit(mu, G) * clifford_unit(nu, G)
< 	   - clifford_unit(nu, G) * clifford_unit(mu, G) * clifford_unit(lam, G)
< 	   - clifford_unit(lam, G) * clifford_unit(nu, G) * clifford_unit(mu, G)
< 	   - clifford_unit(mu, G) * clifford_unit(lam, G) * clifford_unit(nu, G)) / 6
< 	  + indexed(G, sy_symm(), mu, nu) * clifford_unit(lam, G)
< 	  - indexed(G, sy_symm(), mu, lam) * clifford_unit(nu, G)
< 	  + indexed(G, sy_symm(), nu, lam) * clifford_unit(mu, G)
< 	  - clifford_unit(mu, G) * clifford_unit(nu, G) * clifford_unit(lam, G);
---
> 	e = clifford_unit(nu.toggle_variance(), A) * clifford_unit(rho.toggle_variance(), A)
> 	  * clifford_unit(mu, A) * clifford_unit(rho, A) * clifford_unit(nu, A);
> 	e = e.simplify_indexed().collect(clifford_unit(mu, A));
> 	if (anticommuting)
> 		result += check_equal(e, (4*indexed(A2, sy_symm(), mu, mu) - 4 * indexed(A_symm, sy_symm(), mu, mu)*A.trace() +pow(A.trace(), 2)) * clifford_unit(mu, A));
> 	
> 	result += check_equal_simplify_term(e, 4* indexed(A_symm, sy_symm(), nu.toggle_variance(),  rho)*indexed(A_symm, sy_symm(), rho.toggle_variance(), mu) *clifford_unit(nu, A) 
> 										- 2*A.trace() * (clifford_unit(rho, A) * indexed(A_symm, sy_symm(), rho.toggle_variance(), mu) 
> 														 +clifford_unit(nu, A) * indexed(A_symm, sy_symm(), nu.toggle_variance(), mu)) + pow(A.trace(),2)* clifford_unit(mu, A), mu);
> 
> 	e = clifford_unit(nu.toggle_variance(), A) * clifford_unit(rho, A)
> 	  * clifford_unit(mu, A) * clifford_unit(rho.toggle_variance(), A) * clifford_unit(nu, A);
> 	e = e.simplify_indexed().collect(clifford_unit(mu, A));
> 	if (anticommuting)
> 		result += check_equal(e, (4*indexed(A2, sy_symm(), mu, mu) - 4*indexed(A_symm, sy_symm(), mu, mu)*A.trace() +pow(A.trace(), 2))* clifford_unit(mu, A));
> 	
> 	result += check_equal_simplify_term(e, 4* indexed(A_symm, sy_symm(), nu.toggle_variance(),  rho)*indexed(A_symm, sy_symm(), rho.toggle_variance(), mu) *clifford_unit(nu, A) 
> 										- 2*A.trace() * (clifford_unit(rho, A) * indexed(A_symm, sy_symm(), rho.toggle_variance(), mu) 
> 														 +clifford_unit(nu, A) * indexed(A_symm, sy_symm(), nu.toggle_variance(), mu)) + pow(A.trace(),2)* clifford_unit(mu, A), mu);
> 
> 	e = clifford_unit(mu, A) * clifford_unit(nu, A) + clifford_unit(nu, A) * clifford_unit(mu, A);
> 	result += check_equal(canonicalize_clifford(e), 2*dirac_ONE()*indexed(A_symm, sy_symm(), mu, nu));
> 
> 	e = (clifford_unit(mu, A) * clifford_unit(nu, A) * clifford_unit(lam, A)
> 		 + clifford_unit(nu, A) * clifford_unit(lam, A) * clifford_unit(mu, A)
> 		 + clifford_unit(lam, A) * clifford_unit(mu, A) * clifford_unit(nu, A)
> 		 - clifford_unit(nu, A) * clifford_unit(mu, A) * clifford_unit(lam, A)
> 		 - clifford_unit(lam, A) * clifford_unit(nu, A) * clifford_unit(mu, A)
> 		 - clifford_unit(mu, A) * clifford_unit(lam, A) * clifford_unit(nu, A)) / 6
> 		+ indexed(A_symm, sy_symm(), mu, nu) * clifford_unit(lam, A)
> 		- indexed(A_symm, sy_symm(), mu, lam) * clifford_unit(nu, A)
> 		+ indexed(A_symm, sy_symm(), nu, lam) * clifford_unit(mu, A)
> 		- clifford_unit(mu, A) * clifford_unit(nu, A) * clifford_unit(lam, A);
344,345c412,413
< 	ex c = clifford_unit(nu, G, 1);
< 	e = lst_to_clifford(lst(t, x, y, z), mu, G, 1) * lst_to_clifford(lst(1, 2, 3, 4), c);
---
> 	ex c = clifford_unit(nu, A, 1);
> 	e = lst_to_clifford(lst(t, x, y, z), mu, A, 1) * lst_to_clifford(lst(1, 2, 3, 4), c);
347c415,443
< 	result += check_equal((e*e1).simplify_indexed().normal(), dirac_ONE(1));
---
> 	result += check_equal_lst((e*e1).simplify_indexed(), dirac_ONE(1));
> 
> 	// Moebius map (both forms) checks for symmetric metrics only 
> 	matrix M1(2, 2),  M2(2, 2);
> 	c = clifford_unit(nu, A);
> 	
> 	e = clifford_moebius_map(0, dirac_ONE(), 
> 							 dirac_ONE(), 0, lst(t, x, y, z), A); // this is just the inversion
> 	M1 = 0, dirac_ONE(),
> 		dirac_ONE(), 0;
> 	e1 = clifford_moebius_map(M1, lst(t, x, y, z), A); // the inversion again
> 	result += check_equal_lst(e, e1);
> 	
> 	e1 = clifford_to_lst(clifford_inverse(lst_to_clifford(lst(t, x, y, z), mu, A)), c);
> 	result += check_equal_lst(e, e1);
> 	
> 	e = clifford_moebius_map(dirac_ONE(), lst_to_clifford(lst(1, 2, 3, 4), nu, A), 
> 							 0, dirac_ONE(), lst(t, x, y, z), A); //this is just a shift
> 	M2 = dirac_ONE(), lst_to_clifford(lst(1, 2, 3, 4), c),
> 		0, dirac_ONE();
> 	e1 = clifford_moebius_map(M2, lst(t, x, y, z), c); // the same shift
> 	result += check_equal_lst(e, e1);
> 		
> 	result += check_equal(e, lst(t+1, x+2, y+3, z+4));
> 	
> 	// Check the group law for Moebius maps 
> 	e = clifford_moebius_map(M1, ex_to<lst>(e1), c); //composition of M1 and M2
> 	e1 = clifford_moebius_map(M1.mul(M2), lst(t, x, y, z), c); // the product M1*M2
> 	result += check_equal_lst(e, e1);
352c448,449
< static unsigned clifford_check7()
---
> 
> static unsigned clifford_check7(const ex & G, const symbol & dim)
358d454
< 	symbol dim("D");
362c458
< 	ex e;
---
> 	ex e, G_base;
364c460,463
< 	ex G = minkmetric();
---
> 	if (is_a<indexed>(G))
> 		G_base = G.op(0);
> 	else
> 		G_base = G;
389,404c488,519
< 	// canonicalize_clifford() checks
< 	e = clifford_unit(mu, G) * clifford_unit(nu, G) + clifford_unit(nu, G) * clifford_unit(mu, G);
< 	result += check_equal(canonicalize_clifford(e), 2*dirac_ONE()*indexed(G, sy_symm(), mu, nu));
< 
< 	e = (clifford_unit(mu, G) * clifford_unit(nu, G) * clifford_unit(lam, G)
< 	   + clifford_unit(nu, G) * clifford_unit(lam, G) * clifford_unit(mu, G)
< 	   + clifford_unit(lam, G) * clifford_unit(mu, G) * clifford_unit(nu, G)
< 	   - clifford_unit(nu, G) * clifford_unit(mu, G) * clifford_unit(lam, G)
< 	   - clifford_unit(lam, G) * clifford_unit(nu, G) * clifford_unit(mu, G)
< 	   - clifford_unit(mu, G) * clifford_unit(lam, G) * clifford_unit(nu, G)) / 6
< 	  + indexed(G, sy_symm(), mu, nu) * clifford_unit(lam, G)
< 	  - indexed(G, sy_symm(), mu, lam) * clifford_unit(nu, G)
< 	  + indexed(G, sy_symm(), nu, lam) * clifford_unit(mu, G)
< 	  - clifford_unit(mu, G) * clifford_unit(nu, G) * clifford_unit(lam, G);
< 	result += check_equal(canonicalize_clifford(e), 0);
< 
---
> 	// canonicalize_clifford() checks, only for symmetric metrics
> 	if (ex_to<symmetry>(ex_to<indexed>(ex_to<clifford>(clifford_unit(mu, G)).get_metric()).get_symmetry()).has_symmetry()) {
> 		e = clifford_unit(mu, G) * clifford_unit(nu, G) + clifford_unit(nu, G) * clifford_unit(mu, G);
> 		result += check_equal(canonicalize_clifford(e), 2*dirac_ONE()*indexed(G_base, sy_symm(), nu, mu));
> 		
> 		e = (clifford_unit(mu, G) * clifford_unit(nu, G) * clifford_unit(lam, G)
> 			 + clifford_unit(nu, G) * clifford_unit(lam, G) * clifford_unit(mu, G)
> 			 + clifford_unit(lam, G) * clifford_unit(mu, G) * clifford_unit(nu, G)
> 			 - clifford_unit(nu, G) * clifford_unit(mu, G) * clifford_unit(lam, G)
> 			 - clifford_unit(lam, G) * clifford_unit(nu, G) * clifford_unit(mu, G)
> 			 - clifford_unit(mu, G) * clifford_unit(lam, G) * clifford_unit(nu, G)) / 6
> 			+ indexed(G_base, sy_symm(), mu, nu) * clifford_unit(lam, G)
> 			- indexed(G_base, sy_symm(), mu, lam) * clifford_unit(nu, G)
> 			+ indexed(G_base, sy_symm(), nu, lam) * clifford_unit(mu, G)
> 			- clifford_unit(mu, G) * clifford_unit(nu, G) * clifford_unit(lam, G);
> 		result += check_equal(canonicalize_clifford(e), 0);
> 	} else {
> 		e = clifford_unit(mu, G) * clifford_unit(nu, G) + clifford_unit(nu, G) * clifford_unit(mu, G);
> 		result += check_equal(canonicalize_clifford(e), dirac_ONE()*(indexed(G_base, mu, nu) + indexed(G_base, nu, mu)));
> 		
> 		e = (clifford_unit(mu, G) * clifford_unit(nu, G) * clifford_unit(lam, G)
> 			 + clifford_unit(nu, G) * clifford_unit(lam, G) * clifford_unit(mu, G)
> 			 + clifford_unit(lam, G) * clifford_unit(mu, G) * clifford_unit(nu, G)
> 			 - clifford_unit(nu, G) * clifford_unit(mu, G) * clifford_unit(lam, G)
> 			 - clifford_unit(lam, G) * clifford_unit(nu, G) * clifford_unit(mu, G)
> 			 - clifford_unit(mu, G) * clifford_unit(lam, G) * clifford_unit(nu, G)) / 6
> 			+ half * (indexed(G_base,  mu, nu) + indexed(G_base,  nu, mu)) * clifford_unit(lam, G)
> 			- half * (indexed(G_base, mu, lam) + indexed(G_base, lam, mu)) * clifford_unit(nu, G)
> 			+ half * (indexed(G_base, nu, lam) + indexed(G_base, lam, nu)) * clifford_unit(mu, G)
> 			- clifford_unit(mu, G) * clifford_unit(nu, G) * clifford_unit(lam, G);
> 		result += check_equal(canonicalize_clifford(e), 0);
> 	}
420a536,545
> 	// anticommuting, symmetric examples
> 	result += clifford_check6(ex_to<matrix>(diag_matrix(lst(-1, 1, 1, 1)))); cout << '.' << flush;
> 	result += clifford_check6(ex_to<matrix>(diag_matrix(lst(-1, -1, -1, -1)))); cout << '.' << flush;
> 	result += clifford_check6(ex_to<matrix>(diag_matrix(lst(-1, 1, 1, -1)))); cout << '.' << flush;
> 	result += clifford_check6(ex_to<matrix>(diag_matrix(lst(-1, 0, 1, -1)))); cout << '.' << flush;
> 	result += clifford_check6(ex_to<matrix>(diag_matrix(lst(-3, 0, 2, -1)))); cout << '.' << flush;
> 
> 	realsymbol s("s"), t("t"); // symbolic entries in matric
> 	result += clifford_check6(ex_to<matrix>(diag_matrix(lst(-1, 1, s, t)))); cout << '.' << flush;
> 
422,425c547,550
< 	A = -1, 0, 0, 0,
< 	     0, 1, 0, 0,
< 	     0, 0, 1, 0,
< 	     0, 0, 0, 1;
---
> 	A = 1, 0, 0, 0, // anticommuting, not symmetric, Tr=0
> 		0, -1, 0, 0,
> 		0, 0, 0, -1,
> 		0, 0, 1, 0; 
428,431c553,556
< 	A = -1, 0, 0, 0,
< 	     0,-1, 0, 0,
< 	     0, 0,-1, 0,
< 	     0, 0, 0,-1;
---
> 	A = 1, 0, 0, 0, // anticommuting, not symmetric, Tr=2
> 		0, 1, 0, 0,
> 		0, 0, 0, -1,
> 		0, 0, 1, 0; 
433,437c558,562
< 	
< 	A = -1, 0, 0, 0,
< 	     0, 1, 0, 0,
< 	     0, 0, 1, 0,
< 	     0, 0, 0,-1;
---
> 
> 	A = 1, 0, 0, 0, // not anticommuting, symmetric, Tr=0
> 		0, -1, 0, 0,
> 		0, 0, 0, -1,
> 		0, 0, -1, 0; 
440,443c565,568
< 	A = -1, 0, 0, 0,
< 	     0, 0, 0, 0,
< 	     0, 0, 1, 0,
< 	     0, 0, 0,-1;
---
> 	A = 1, 0, 0, 0, // not anticommuting, symmetric, Tr=2
> 		0, 1, 0, 0,
> 		0, 0, 0, -1,
> 		0, 0, -1, 0; 
446c571,581
< 	result += clifford_check7(); cout << '.' << flush;
---
> 	A = 1, 1, 0, 0, // not anticommuting, not symmetric, Tr=4
> 		0, 1, 1, 0,
> 		0, 0, 1, 1,
> 		0, 0, 0, 1; 
> 	result += clifford_check6(A); cout << '.' << flush;
> 
> 	symbol dim("D");
> 	result += clifford_check7(minkmetric(), dim); cout << '.' << flush;
> 
> 	varidx chi(symbol("chi"), dim), xi(symbol("xi"), dim);
> 	result += clifford_check7(lorentz_g(xi, chi), dim); cout << '.' << flush;




More information about the GiNaC-devel mailing list