[GiNaC-devel] [PATCH 03/10] introduce gcd_pf_mul: gcd helper to handle partially factored expressions.
Alexei Sheplyakov
varg at theor.jinr.ru
Mon Aug 25 14:53:47 CEST 2008
GiNaC tries to avoid expanding expressions while computing GCDs and applies
a number of heuristics. Usually this improves performance, but in some cases
it doesn't. Allow user to switch off heuristics.
Part 3:
Move the code handling products from gcd() into a separate function. This
is *really* only code move, everything else should be considered a bug.
---
ginac/normal.cpp | 89 +++++++++++++++++++++++++++++------------------------
1 files changed, 49 insertions(+), 40 deletions(-)
diff --git a/ginac/normal.cpp b/ginac/normal.cpp
index 0af5aad..0cb9100 100644
--- a/ginac/normal.cpp
+++ b/ginac/normal.cpp
@@ -1419,6 +1419,10 @@ static bool heur_gcd(ex& res, const ex& a, const ex& b, ex *ca, ex *cb,
// large expressions). At least one of the arguments should be a power.
static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args);
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). At least one of the arguments should be a product.
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args);
+
/** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X)
* and b(X) in Z[X]. Optionally also compute the cofactors of a and b,
* defined by a = ca * gcd(a, b) and b = cb * gcd(a, b).
@@ -1461,46 +1465,8 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
}
// Partially factored cases (to avoid expanding large expressions)
- if (is_exactly_a<mul>(a)) {
- if (is_exactly_a<mul>(b) && b.nops() > a.nops())
- goto factored_b;
-factored_a:
- size_t num = a.nops();
- exvector g; g.reserve(num);
- exvector acc_ca; acc_ca.reserve(num);
- ex part_b = b;
- for (size_t i=0; i<num; i++) {
- ex part_ca, part_cb;
- g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args));
- acc_ca.push_back(part_ca);
- part_b = part_cb;
- }
- if (ca)
- *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated);
- if (cb)
- *cb = part_b;
- return (new mul(g))->setflag(status_flags::dynallocated);
- } else if (is_exactly_a<mul>(b)) {
- if (is_exactly_a<mul>(a) && a.nops() > b.nops())
- goto factored_a;
-factored_b:
- size_t num = b.nops();
- exvector g; g.reserve(num);
- exvector acc_cb; acc_cb.reserve(num);
- ex part_a = a;
- for (size_t i=0; i<num; i++) {
- ex part_ca, part_cb;
- g.push_back(gcd(part_a, b.op(i), &part_ca, &part_cb, check_args));
- acc_cb.push_back(part_cb);
- part_a = part_ca;
- }
- if (ca)
- *ca = part_a;
- if (cb)
- *cb = (new mul(acc_cb))->setflag(status_flags::dynallocated);
- return (new mul(g))->setflag(status_flags::dynallocated);
- }
-
+ if (is_exactly_a<mul>(a) || is_exactly_a<mul>(b))
+ return gcd_pf_mul(a, b, ca, cb, check_args);
#if FAST_COMPARE
if (is_exactly_a<power>(a) || is_exactly_a<power>(b))
return gcd_pf_pow(a, b, ca, cb, check_args);
@@ -1771,6 +1737,49 @@ static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args)
}
}
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args)
+{
+ if (is_exactly_a<mul>(a)) {
+ if (is_exactly_a<mul>(b) && b.nops() > a.nops())
+ goto factored_b;
+factored_a:
+ size_t num = a.nops();
+ exvector g; g.reserve(num);
+ exvector acc_ca; acc_ca.reserve(num);
+ ex part_b = b;
+ for (size_t i=0; i<num; i++) {
+ ex part_ca, part_cb;
+ g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args));
+ acc_ca.push_back(part_ca);
+ part_b = part_cb;
+ }
+ if (ca)
+ *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated);
+ if (cb)
+ *cb = part_b;
+ return (new mul(g))->setflag(status_flags::dynallocated);
+ } else if (is_exactly_a<mul>(b)) {
+ if (is_exactly_a<mul>(a) && a.nops() > b.nops())
+ goto factored_a;
+factored_b:
+ size_t num = b.nops();
+ exvector g; g.reserve(num);
+ exvector acc_cb; acc_cb.reserve(num);
+ ex part_a = a;
+ for (size_t i=0; i<num; i++) {
+ ex part_ca, part_cb;
+ g.push_back(gcd(part_a, b.op(i), &part_ca, &part_cb, check_args));
+ acc_cb.push_back(part_cb);
+ part_a = part_ca;
+ }
+ if (ca)
+ *ca = part_a;
+ if (cb)
+ *cb = (new mul(acc_cb))->setflag(status_flags::dynallocated);
+ return (new mul(g))->setflag(status_flags::dynallocated);
+ }
+}
+
/** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X].
*
* @param a first multivariate polynomial
--
1.5.6
Best regards,
Alexei
--
All science is either physics or stamp collecting.
-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 827 bytes
Desc: Digital signature
URL: <http://www.ginac.de/pipermail/ginac-devel/attachments/20080825/fb1e6154/attachment.sig>
More information about the GiNaC-devel
mailing list