[GiNaC-devel] [PATCH 08/10] introduce gcd_pf_pow_pow: gcd helper to handle partially factored expressions.
Alexei Sheplyakov
varg at theor.jinr.ru
Mon Aug 25 14:56:04 CEST 2008
gcd_pf_pow_pow handles the case when both arguments of gcd() are powers.
N.B. the actual code moved from gcd_pf_pow, no functional changes.
---
ginac/normal.cpp | 98 +++++++++++++++++++++++++++++-------------------------
1 files changed, 53 insertions(+), 45 deletions(-)
diff --git a/ginac/normal.cpp b/ginac/normal.cpp
index e97a7ce..d5319b9 100644
--- a/ginac/normal.cpp
+++ b/ginac/normal.cpp
@@ -1639,56 +1639,64 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
return g;
}
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). Both arguments should be powers.
+static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+ ex p = a.op(0);
+ const ex& exp_a = a.op(1);
+ ex pb = b.op(0);
+ const ex& exp_b = b.op(1);
+ if (p.is_equal(pb)) {
+ // a = p^n, b = p^m, gcd = p^min(n, m)
+ if (exp_a < exp_b) {
+ if (ca)
+ *ca = _ex1;
+ if (cb)
+ *cb = power(p, exp_b - exp_a);
+ return power(p, exp_a);
+ } else {
+ if (ca)
+ *ca = power(p, exp_a - exp_b);
+ if (cb)
+ *cb = _ex1;
+ return power(p, exp_b);
+ }
+ } else {
+ ex p_co, pb_co;
+ ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
+ if (p_gcd.is_equal(_ex1)) {
+ // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
+ // gcd(a,b) = 1
+ if (ca)
+ *ca = a;
+ if (cb)
+ *cb = b;
+ return _ex1;
+ // XXX: do I need to check for p_gcd = -1?
+ } else {
+ // there are common factors:
+ // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+ // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+ if (exp_a < exp_b) {
+ return power(p_gcd, exp_a)*
+ gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+ } else {
+ return power(p_gcd, exp_b)*
+ gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+ }
+ } // p_gcd.is_equal(_ex1)
+ } // p.is_equal(pb)
+}
+
static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
{
if (is_exactly_a<power>(a)) {
ex p = a.op(0);
const ex& exp_a = a.op(1);
- if (is_exactly_a<power>(b)) {
- ex pb = b.op(0);
- const ex& exp_b = b.op(1);
- if (p.is_equal(pb)) {
- // a = p^n, b = p^m, gcd = p^min(n, m)
- if (exp_a < exp_b) {
- if (ca)
- *ca = _ex1;
- if (cb)
- *cb = power(p, exp_b - exp_a);
- return power(p, exp_a);
- } else {
- if (ca)
- *ca = power(p, exp_a - exp_b);
- if (cb)
- *cb = _ex1;
- return power(p, exp_b);
- }
- } else {
- ex p_co, pb_co;
- ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
- if (p_gcd.is_equal(_ex1)) {
- // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
- // gcd(a,b) = 1
- if (ca)
- *ca = a;
- if (cb)
- *cb = b;
- return _ex1;
- // XXX: do I need to check for p_gcd = -1?
- } else {
- // there are common factors:
- // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
- // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
- if (exp_a < exp_b) {
- return power(p_gcd, exp_a)*
- gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
- } else {
- return power(p_gcd, exp_b)*
- gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
- }
- } // p_gcd.is_equal(_ex1)
- } // p.is_equal(pb)
-
- } else {
+ if (is_exactly_a<power>(b))
+ return gcd_pf_pow_pow(a, b, ca, cb);
+ else {
if (p.is_equal(b)) {
// a = p^n, b = p, gcd = p
if (ca)
--
1.5.6
Best regards,
Alexei
--
All science is either physics or stamp collecting.
-------------- next part --------------
A non-text attachment was scrubbed...
Name: not available
Type: application/pgp-signature
Size: 827 bytes
Desc: Digital signature
Url : http://www.cebix.net/pipermail/ginac-devel/attachments/20080825/794ccc48/attachment.sig
More information about the GiNaC-devel
mailing list