[GiNaC-devel] [PATCH 10/10] gcd_pf_pow_pow: deobfuscate a little bit (no functional changes).

Alexei Sheplyakov varg at theor.jinr.ru
Mon Aug 25 14:57:38 CEST 2008


Use

if (foo)
	return bar();
return baz();

instead of

	if (foo) {
		return bar();
	} else {
		return baz();
	}

This makes the code a little bit more readable.

---
 ginac/normal.cpp |   40 ++++++++++++++++++++--------------------
 1 files changed, 20 insertions(+), 20 deletions(-)

diff --git a/ginac/normal.cpp b/ginac/normal.cpp
index 6392e3f..09773d3 100644
--- a/ginac/normal.cpp
+++ b/ginac/normal.cpp
@@ -1647,8 +1647,9 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
 	const ex& exp_a = a.op(1);
 	ex pb = b.op(0);
 	const ex& exp_b = b.op(1);
+
+	// a = p^n, b = p^m, gcd = p^min(n, m)
 	if (p.is_equal(pb)) {
-		// a = p^n, b = p^m, gcd = p^min(n, m)
 		if (exp_a < exp_b) {
 			if (ca)
 				*ca = _ex1;
@@ -1662,31 +1663,30 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
 				*cb = _ex1;
 			return power(p, exp_b);
 		}
-	} else {
-		ex p_co, pb_co;
-		ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
-		if (p_gcd.is_equal(_ex1)) {
-			// a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
-			// gcd(a,b) = 1
+	}
+
+	ex p_co, pb_co;
+	ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
+	// a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> gcd(a,b) = 1
+	if (p_gcd.is_equal(_ex1)) {
 			if (ca)
 				*ca = a;
 			if (cb)
 				*cb = b;
 			return _ex1;
 			// XXX: do I need to check for p_gcd = -1?
-		} else {
-			// there are common factors:
-			// a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
-			// gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
-			if (exp_a < exp_b) {
-				return power(p_gcd, exp_a)*
-					gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
-			} else {
-				return power(p_gcd, exp_b)*
-					gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
-			}
-		} // p_gcd.is_equal(_ex1)
-	} // p.is_equal(pb)
+	}
+
+	// there are common factors:
+	// a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+	// gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+	if (exp_a < exp_b) {
+		ex pg =  gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+		return power(p_gcd, exp_a)*pg;
+	} else {
+		ex pg = gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+		return power(p_gcd, exp_b)*pg;
+	}
 }
 
 static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
-- 
1.5.6

Best regards,
	Alexei

-- 
All science is either physics or stamp collecting.

-------------- next part --------------
A non-text attachment was scrubbed...
Name: not available
Type: application/pgp-signature
Size: 827 bytes
Desc: Digital signature
Url : http://www.cebix.net/pipermail/ginac-devel/attachments/20080825/649ff66d/attachment.sig 


More information about the GiNaC-devel mailing list