[GiNaC-devel] [PATCH 10/10] gcd_pf_pow_pow: deobfuscate a little bit (no functional changes).
Alexei Sheplyakov
varg at theor.jinr.ru
Mon Aug 25 14:57:38 CEST 2008
Use
if (foo)
return bar();
return baz();
instead of
if (foo) {
return bar();
} else {
return baz();
}
This makes the code a little bit more readable.
---
ginac/normal.cpp | 40 ++++++++++++++++++++--------------------
1 files changed, 20 insertions(+), 20 deletions(-)
diff --git a/ginac/normal.cpp b/ginac/normal.cpp
index 6392e3f..09773d3 100644
--- a/ginac/normal.cpp
+++ b/ginac/normal.cpp
@@ -1647,8 +1647,9 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
const ex& exp_a = a.op(1);
ex pb = b.op(0);
const ex& exp_b = b.op(1);
+
+ // a = p^n, b = p^m, gcd = p^min(n, m)
if (p.is_equal(pb)) {
- // a = p^n, b = p^m, gcd = p^min(n, m)
if (exp_a < exp_b) {
if (ca)
*ca = _ex1;
@@ -1662,31 +1663,30 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
*cb = _ex1;
return power(p, exp_b);
}
- } else {
- ex p_co, pb_co;
- ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
- if (p_gcd.is_equal(_ex1)) {
- // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
- // gcd(a,b) = 1
+ }
+
+ ex p_co, pb_co;
+ ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
+ // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> gcd(a,b) = 1
+ if (p_gcd.is_equal(_ex1)) {
if (ca)
*ca = a;
if (cb)
*cb = b;
return _ex1;
// XXX: do I need to check for p_gcd = -1?
- } else {
- // there are common factors:
- // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
- // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
- if (exp_a < exp_b) {
- return power(p_gcd, exp_a)*
- gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
- } else {
- return power(p_gcd, exp_b)*
- gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
- }
- } // p_gcd.is_equal(_ex1)
- } // p.is_equal(pb)
+ }
+
+ // there are common factors:
+ // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+ // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+ if (exp_a < exp_b) {
+ ex pg = gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+ return power(p_gcd, exp_a)*pg;
+ } else {
+ ex pg = gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+ return power(p_gcd, exp_b)*pg;
+ }
}
static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
--
1.5.6
Best regards,
Alexei
--
All science is either physics or stamp collecting.
-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 827 bytes
Desc: Digital signature
URL: <http://www.ginac.de/pipermail/ginac-devel/attachments/20080825/649ff66d/attachment.sig>
More information about the GiNaC-devel
mailing list