[GiNaC-devel] [PATCH 5/8] tgamma, lgamma: convert to take cl_N as an argument; provide wrappers for GiNaC::numeric
Alexei Sheplyakov
varg at theor.jinr.ru
Wed Mar 19 10:27:07 CET 2008
Implicit conversion from cl_N to numeric considered harmful, part 5.
---
ginac/numeric.cpp | 58 +++++++++++++++++++++++++++++++++++++---------------
1 files changed, 41 insertions(+), 17 deletions(-)
diff --git a/ginac/numeric.cpp b/ginac/numeric.cpp
index a06be42..704854c 100644
--- a/ginac/numeric.cpp
+++ b/ginac/numeric.cpp
@@ -1962,24 +1962,34 @@ lanczos_coeffs::lanczos_coeffs()
coeffs[3].swap(coeffs_120);
}
+static const cln::float_format_t guess_precision(const cln::cl_N& x)
+{
+ cln::float_format_t prec = cln::default_float_format;
+ if (!instanceof(realpart(x), cln::cl_RA_ring))
+ prec = cln::float_format(cln::the<cln::cl_F>(realpart(x)));
+ if (!instanceof(imagpart(x), cln::cl_RA_ring))
+ prec = cln::float_format(cln::the<cln::cl_F>(imagpart(x)));
+ return prec;
+}
/** The Gamma function.
* Use the Lanczos approximation. If the coefficients used here are not
* sufficiently many or sufficiently accurate, more can be calculated
* using the program doc/examples/lanczos.cpp. In that case, be sure to
* read the comments in that file. */
-const numeric lgamma(const numeric &x)
+const cln::cl_N lgamma_(const cln::cl_N &x)
{
+ cln::float_format_t prec = guess_precision(x);
lanczos_coeffs lc;
- if (lc.sufficiently_accurate(Digits)) {
- cln::cl_N pi_val = cln::pi(cln::default_float_format);
- if (x.real() < 0.5)
- return log(pi_val) - log(sin(pi_val*x.to_cl_N()))
- - lgamma(numeric(1).sub(x));
- cln::cl_N A = lc.calc_lanczos_A(x.to_cl_N());
- cln::cl_N temp = x.to_cl_N() + lc.get_order() - cln::cl_N(1)/2;
+ if (lc.sufficiently_accurate(prec)) {
+ cln::cl_N pi_val = cln::pi(prec);
+ if (realpart(x) < 0.5)
+ return cln::log(pi_val) - cln::log(sin(pi_val*x))
+ - lgamma_(1 - x);
+ cln::cl_N A = lc.calc_lanczos_A(x);
+ cln::cl_N temp = x + lc.get_order() - cln::cl_N(1)/2;
cln::cl_N result = log(cln::cl_I(2)*pi_val)/2
- + (x.to_cl_N()-cln::cl_N(1)/2)*log(temp)
+ + (x-cln::cl_N(1)/2)*log(temp)
- temp
+ log(A);
return result;
@@ -1988,17 +1998,25 @@ const numeric lgamma(const numeric &x)
throw dunno();
}
-const numeric tgamma(const numeric &x)
+const numeric lgamma(const numeric &x)
+{
+ const cln::cl_N x_ = x.to_cl_N();
+ const cln::cl_N result = lgamma_(x_);
+ return numeric(result);
+}
+
+const cln::cl_N tgamma_(const cln::cl_N &x)
{
+ cln::float_format_t prec = guess_precision(x);
lanczos_coeffs lc;
- if (lc.sufficiently_accurate(Digits)) {
- cln::cl_N pi_val = cln::pi(cln::default_float_format);
- if (x.real() < 0.5)
- return pi_val/(sin(pi_val*x))/(tgamma(numeric(1).sub(x)).to_cl_N());
- cln::cl_N A = lc.calc_lanczos_A(x.to_cl_N());
- cln::cl_N temp = x.to_cl_N() + lc.get_order() - cln::cl_N(1)/2;
+ if (lc.sufficiently_accurate(prec)) {
+ cln::cl_N pi_val = cln::pi(prec);
+ if (realpart(x) < 0.5)
+ return pi_val/(cln::sin(pi_val*x))/tgamma_(1 - x);
+ cln::cl_N A = lc.calc_lanczos_A(x);
+ cln::cl_N temp = x + lc.get_order() - cln::cl_N(1)/2;
cln::cl_N result
- = sqrt(cln::cl_I(2)*pi_val) * expt(temp, x.to_cl_N()-cln::cl_N(1)/2)
+ = sqrt(cln::cl_I(2)*pi_val) * expt(temp, x - cln::cl_N(1)/2)
* exp(-temp) * A;
return result;
}
@@ -2006,6 +2024,12 @@ const numeric tgamma(const numeric &x)
throw dunno();
}
+const numeric tgamma(const numeric &x)
+{
+ const cln::cl_N x_ = x.to_cl_N();
+ const cln::cl_N result = tgamma_(x_);
+ return numeric(result);
+}
/** The psi function (aka polygamma function).
* This is only a stub! */
--
1.5.4.2
--
All science is either physics or stamp collecting.
-------------- next part --------------
A non-text attachment was scrubbed...
Name: not available
Type: application/pgp-signature
Size: 827 bytes
Desc: Digital signature
Url : http://www.cebix.net/pipermail/ginac-devel/attachments/20080319/24b27309/attachment.sig
More information about the GiNaC-devel
mailing list