1 /** @file inifcns_gamma.cpp
3 * Implementation of Gamma-function, Beta-function, Polygamma-functions, and
4 * some related stuff. */
7 * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 #include "relational.h"
36 #ifndef NO_NAMESPACE_GINAC
38 #endif // ndef NO_NAMESPACE_GINAC
41 // Logarithm of Gamma function
44 static ex lgamma_evalf(const ex & x)
48 END_TYPECHECK(lgamma(x))
50 return lgamma(ex_to_numeric(x));
54 /** Evaluation of lgamma(x), the natural logarithm of the Gamma function.
55 * Knows about integer arguments and that's it. Somebody ought to provide
56 * some good numerical evaluation some day...
58 * @exception GiNaC::pole_error("lgamma_eval(): logarithmic pole",0) */
59 static ex lgamma_eval(const ex & x)
61 if (x.info(info_flags::numeric)) {
62 // trap integer arguments:
63 if (x.info(info_flags::integer)) {
64 // lgamma(n) -> log((n-1)!) for postitive n
65 if (x.info(info_flags::posint))
66 return log(factorial(x.exadd(_ex_1())));
68 throw (pole_error("lgamma_eval(): logarithmic pole",0));
70 // lgamma_evalf should be called here once it becomes available
73 return lgamma(x).hold();
77 static ex lgamma_deriv(const ex & x, unsigned deriv_param)
79 GINAC_ASSERT(deriv_param==0);
81 // d/dx lgamma(x) -> psi(x)
86 static ex lgamma_series(const ex & arg,
87 const relational & rel,
92 // Taylor series where there is no pole falls back to psi function
94 // On a pole at -m we could use the recurrence relation
95 // lgamma(x) == lgamma(x+1)-log(x)
97 // series(lgamma(x),x==-m,order) ==
98 // series(lgamma(x+m+1)-log(x)...-log(x+m)),x==-m,order);
99 const ex arg_pt = arg.subs(rel);
100 if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
101 throw do_taylor(); // caught by function::series()
102 // if we got here we have to care for a simple pole of tgamma(-m):
103 numeric m = -ex_to_numeric(arg_pt);
105 for (numeric p; p<=m; ++p)
107 return (lgamma(arg+m+_ex1())-recur).series(rel, order, options);
111 REGISTER_FUNCTION(lgamma, eval_func(lgamma_eval).
112 evalf_func(lgamma_evalf).
113 derivative_func(lgamma_deriv).
114 series_func(lgamma_series));
118 // true Gamma function
121 static ex tgamma_evalf(const ex & x)
125 END_TYPECHECK(tgamma(x))
127 return tgamma(ex_to_numeric(x));
131 /** Evaluation of tgamma(x), the true Gamma function. Knows about integer
132 * arguments, half-integer arguments and that's it. Somebody ought to provide
133 * some good numerical evaluation some day...
135 * @exception pole_error("tgamma_eval(): simple pole",0) */
136 static ex tgamma_eval(const ex & x)
138 if (x.info(info_flags::numeric)) {
139 // trap integer arguments:
140 if (x.info(info_flags::integer)) {
141 // tgamma(n) -> (n-1)! for postitive n
142 if (x.info(info_flags::posint)) {
143 return factorial(ex_to_numeric(x).sub(_num1()));
145 throw (pole_error("tgamma_eval(): simple pole",1));
148 // trap half integer arguments:
149 if ((x*2).info(info_flags::integer)) {
150 // trap positive x==(n+1/2)
151 // tgamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n)
152 if ((x*_ex2()).info(info_flags::posint)) {
153 numeric n = ex_to_numeric(x).sub(_num1_2());
154 numeric coefficient = doublefactorial(n.mul(_num2()).sub(_num1()));
155 coefficient = coefficient.div(pow(_num2(),n));
156 return coefficient * pow(Pi,_ex1_2());
158 // trap negative x==(-n+1/2)
159 // tgamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1))
160 numeric n = abs(ex_to_numeric(x).sub(_num1_2()));
161 numeric coefficient = pow(_num_2(), n);
162 coefficient = coefficient.div(doublefactorial(n.mul(_num2()).sub(_num1())));;
163 return coefficient*power(Pi,_ex1_2());
166 // tgamma_evalf should be called here once it becomes available
169 return tgamma(x).hold();
173 static ex tgamma_deriv(const ex & x, unsigned deriv_param)
175 GINAC_ASSERT(deriv_param==0);
177 // d/dx tgamma(x) -> psi(x)*tgamma(x)
178 return psi(x)*tgamma(x);
182 static ex tgamma_series(const ex & arg,
183 const relational & rel,
188 // Taylor series where there is no pole falls back to psi function
190 // On a pole at -m use the recurrence relation
191 // tgamma(x) == tgamma(x+1) / x
192 // from which follows
193 // series(tgamma(x),x==-m,order) ==
194 // series(tgamma(x+m+1)/(x*(x+1)*...*(x+m)),x==-m,order+1);
195 const ex arg_pt = arg.subs(rel);
196 if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
197 throw do_taylor(); // caught by function::series()
198 // if we got here we have to care for a simple pole at -m:
199 numeric m = -ex_to_numeric(arg_pt);
200 ex ser_denom = _ex1();
201 for (numeric p; p<=m; ++p)
203 return (tgamma(arg+m+_ex1())/ser_denom).series(rel, order+1, options);
207 REGISTER_FUNCTION(tgamma, eval_func(tgamma_eval).
208 evalf_func(tgamma_evalf).
209 derivative_func(tgamma_deriv).
210 series_func(tgamma_series));
217 static ex beta_evalf(const ex & x, const ex & y)
222 END_TYPECHECK(beta(x,y))
224 return tgamma(ex_to_numeric(x))*tgamma(ex_to_numeric(y))/tgamma(ex_to_numeric(x+y));
228 static ex beta_eval(const ex & x, const ex & y)
230 if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) {
231 // treat all problematic x and y that may not be passed into tgamma,
232 // because they would throw there although beta(x,y) is well-defined
233 // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y)
234 numeric nx(ex_to_numeric(x));
235 numeric ny(ex_to_numeric(y));
236 if (nx.is_real() && nx.is_integer() &&
237 ny.is_real() && ny.is_integer()) {
238 if (nx.is_negative()) {
240 return pow(_num_1(), ny)*beta(1-x-y, y);
242 throw (pole_error("beta_eval(): simple pole",1));
244 if (ny.is_negative()) {
246 return pow(_num_1(), nx)*beta(1-y-x, x);
248 throw (pole_error("beta_eval(): simple pole",1));
250 return tgamma(x)*tgamma(y)/tgamma(x+y);
252 // no problem in numerator, but denominator has pole:
253 if ((nx+ny).is_real() &&
254 (nx+ny).is_integer() &&
255 !(nx+ny).is_positive())
258 return tgamma(x)*tgamma(y)/tgamma(x+y);
261 return beta(x,y).hold();
265 static ex beta_deriv(const ex & x, const ex & y, unsigned deriv_param)
267 GINAC_ASSERT(deriv_param<2);
270 // d/dx beta(x,y) -> (psi(x)-psi(x+y)) * beta(x,y)
272 retval = (psi(x)-psi(x+y))*beta(x,y);
273 // d/dy beta(x,y) -> (psi(y)-psi(x+y)) * beta(x,y)
275 retval = (psi(y)-psi(x+y))*beta(x,y);
280 static ex beta_series(const ex & arg1,
282 const relational & rel,
287 // Taylor series where there is no pole of one of the tgamma functions
288 // falls back to beta function evaluation. Otherwise, fall back to
289 // tgamma series directly.
290 const ex arg1_pt = arg1.subs(rel);
291 const ex arg2_pt = arg2.subs(rel);
292 GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol));
293 const symbol *s = static_cast<symbol *>(rel.lhs().bp);
294 ex arg1_ser, arg2_ser, arg1arg2_ser;
295 if ((!arg1_pt.info(info_flags::integer) || arg1_pt.info(info_flags::positive)) &&
296 (!arg2_pt.info(info_flags::integer) || arg2_pt.info(info_flags::positive)))
297 throw do_taylor(); // caught by function::series()
298 // trap the case where arg1 is on a pole:
299 if (arg1.info(info_flags::integer) && !arg1.info(info_flags::positive))
300 arg1_ser = tgamma(arg1+*s).series(rel, order, options);
302 arg1_ser = tgamma(arg1).series(rel,order);
303 // trap the case where arg2 is on a pole:
304 if (arg2.info(info_flags::integer) && !arg2.info(info_flags::positive))
305 arg2_ser = tgamma(arg2+*s).series(rel, order, options);
307 arg2_ser = tgamma(arg2).series(rel,order);
308 // trap the case where arg1+arg2 is on a pole:
309 if ((arg1+arg2).info(info_flags::integer) && !(arg1+arg2).info(info_flags::positive))
310 arg1arg2_ser = tgamma(arg2+arg1+*s).series(rel, order, options);
312 arg1arg2_ser = tgamma(arg2+arg1).series(rel,order);
313 // compose the result (expanding all the terms):
314 return (arg1_ser*arg2_ser/arg1arg2_ser).series(rel, order, options).expand();
318 REGISTER_FUNCTION(beta, eval_func(beta_eval).
319 evalf_func(beta_evalf).
320 derivative_func(beta_deriv).
321 series_func(beta_series));
325 // Psi-function (aka digamma-function)
328 static ex psi1_evalf(const ex & x)
332 END_TYPECHECK(psi(x))
334 return psi(ex_to_numeric(x));
337 /** Evaluation of digamma-function psi(x).
338 * Somebody ought to provide some good numerical evaluation some day... */
339 static ex psi1_eval(const ex & x)
341 if (x.info(info_flags::numeric)) {
342 numeric nx = ex_to_numeric(x);
343 if (nx.is_integer()) {
345 if (nx.is_positive()) {
346 // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - Euler
348 for (numeric i(nx+_num_1()); i.is_positive(); --i)
352 // for non-positive integers there is a pole:
353 throw (pole_error("psi_eval(): simple pole",1));
356 if ((_num2()*nx).is_integer()) {
358 if (nx.is_positive()) {
359 // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - Euler - 2log(2)
361 for (numeric i((nx+_num_1())*_num2()); i.is_positive(); i-=_num2())
362 rat += _num2()*i.inverse();
363 return rat-Euler-_ex2()*log(_ex2());
365 // use the recurrence relation
366 // psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2)
367 // to relate psi(-m-1/2) to psi(1/2):
368 // psi(-m-1/2) == psi(1/2) + r
369 // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1))
371 for (numeric p(nx); p<0; ++p)
372 recur -= pow(p, _num_1());
373 return recur+psi(_ex1_2());
376 // psi1_evalf should be called here once it becomes available
379 return psi(x).hold();
382 static ex psi1_deriv(const ex & x, unsigned deriv_param)
384 GINAC_ASSERT(deriv_param==0);
386 // d/dx psi(x) -> psi(1,x)
387 return psi(_ex1(), x);
390 static ex psi1_series(const ex & arg,
391 const relational & rel,
396 // Taylor series where there is no pole falls back to polygamma function
398 // On a pole at -m use the recurrence relation
399 // psi(x) == psi(x+1) - 1/z
400 // from which follows
401 // series(psi(x),x==-m,order) ==
402 // series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x==-m,order);
403 const ex arg_pt = arg.subs(rel);
404 if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
405 throw do_taylor(); // caught by function::series()
406 // if we got here we have to care for a simple pole at -m:
407 numeric m = -ex_to_numeric(arg_pt);
409 for (numeric p; p<=m; ++p)
410 recur += power(arg+p,_ex_1());
411 return (psi(arg+m+_ex1())-recur).series(rel, order, options);
414 const unsigned function_index_psi1 =
415 function::register_new(function_options("psi").
416 eval_func(psi1_eval).
417 evalf_func(psi1_evalf).
418 derivative_func(psi1_deriv).
419 series_func(psi1_series).
423 // Psi-functions (aka polygamma-functions) psi(0,x)==psi(x)
426 static ex psi2_evalf(const ex & n, const ex & x)
431 END_TYPECHECK(psi(n,x))
433 return psi(ex_to_numeric(n), ex_to_numeric(x));
436 /** Evaluation of polygamma-function psi(n,x).
437 * Somebody ought to provide some good numerical evaluation some day... */
438 static ex psi2_eval(const ex & n, const ex & x)
440 // psi(0,x) -> psi(x)
443 // psi(-1,x) -> log(tgamma(x))
444 if (n.is_equal(_ex_1()))
445 return log(tgamma(x));
446 if (n.info(info_flags::numeric) && n.info(info_flags::posint) &&
447 x.info(info_flags::numeric)) {
448 numeric nn = ex_to_numeric(n);
449 numeric nx = ex_to_numeric(x);
450 if (nx.is_integer()) {
452 if (nx.is_equal(_num1()))
453 // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1)
454 return pow(_num_1(),nn+_num1())*factorial(nn)*zeta(ex(nn+_num1()));
455 if (nx.is_positive()) {
456 // use the recurrence relation
457 // psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1)
458 // to relate psi(n,m) to psi(n,1):
459 // psi(n,m) == psi(n,1) + r
460 // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1))
462 for (numeric p(1); p<nx; ++p)
463 recur += pow(p, -nn+_num_1());
464 recur *= factorial(nn)*pow(_num_1(), nn);
465 return recur+psi(n,_ex1());
467 // for non-positive integers there is a pole:
468 throw (pole_error("psi2_eval(): pole",1));
471 if ((_num2()*nx).is_integer()) {
473 if (nx.is_equal(_num1_2()))
474 // use psi(n,1/2) == (-)^(n+1) * n! * (2^(n+1)-1) * zeta(n+1)
475 return pow(_num_1(),nn+_num1())*factorial(nn)*(pow(_num2(),nn+_num1()) + _num_1())*zeta(ex(nn+_num1()));
476 if (nx.is_positive()) {
477 numeric m = nx - _num1_2();
478 // use the multiplication formula
479 // psi(n,2*m) == (psi(n,m) + psi(n,m+1/2)) / 2^(n+1)
480 // to revert to positive integer case
481 return psi(n,_num2()*m)*pow(_num2(),nn+_num1())-psi(n,m);
483 // use the recurrence relation
484 // psi(n,-m-1/2) == psi(n,-m-1/2+1) - (-)^n * n! / (-m-1/2)^(n+1)
485 // to relate psi(n,-m-1/2) to psi(n,1/2):
486 // psi(n,-m-1/2) == psi(n,1/2) + r
487 // where r == (-)^(n+1) * n! * ((-1/2)^(-n-1) + ... + (-m-1/2)^(-n-1))
489 for (numeric p(nx); p<0; ++p)
490 recur += pow(p, -nn+_num_1());
491 recur *= factorial(nn)*pow(_num_1(), nn+_num_1());
492 return recur+psi(n,_ex1_2());
495 // psi2_evalf should be called here once it becomes available
498 return psi(n, x).hold();
501 static ex psi2_deriv(const ex & n, const ex & x, unsigned deriv_param)
503 GINAC_ASSERT(deriv_param<2);
505 if (deriv_param==0) {
507 throw(std::logic_error("cannot diff psi(n,x) with respect to n"));
509 // d/dx psi(n,x) -> psi(n+1,x)
510 return psi(n+_ex1(), x);
513 static ex psi2_series(const ex & n,
515 const relational & rel,
520 // Taylor series where there is no pole falls back to polygamma function
522 // On a pole at -m use the recurrence relation
523 // psi(n,x) == psi(n,x+1) - (-)^n * n! / x^(n+1)
524 // from which follows
525 // series(psi(x),x==-m,order) ==
526 // series(psi(x+m+1) - (-1)^n * n! * ((x)^(-n-1) + (x+1)^(-n-1) + ...
527 // ... + (x+m)^(-n-1))),x==-m,order);
528 const ex arg_pt = arg.subs(rel);
529 if (!arg_pt.info(info_flags::integer) || arg_pt.info(info_flags::positive))
530 throw do_taylor(); // caught by function::series()
531 // if we got here we have to care for a pole of order n+1 at -m:
532 numeric m = -ex_to_numeric(arg_pt);
534 for (numeric p; p<=m; ++p)
535 recur += power(arg+p,-n+_ex_1());
536 recur *= factorial(n)*power(_ex_1(),n);
537 return (psi(n, arg+m+_ex1())-recur).series(rel, order, options);
540 const unsigned function_index_psi2 =
541 function::register_new(function_options("psi").
542 eval_func(psi2_eval).
543 evalf_func(psi2_evalf).
544 derivative_func(psi2_deriv).
545 series_func(psi2_series).
549 #ifndef NO_NAMESPACE_GINAC
551 #endif // ndef NO_NAMESPACE_GINAC