]> www.ginac.de Git - ginac.git/blob - ginac/power.cpp
added to_polynomial(), to complement to_rational()
[ginac.git] / ginac / power.cpp
1 /** @file power.cpp
2  *
3  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
4
5 /*
6  *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <vector>
24 #include <iostream>
25 #include <stdexcept>
26 #include <limits>
27
28 #include "power.h"
29 #include "expairseq.h"
30 #include "add.h"
31 #include "mul.h"
32 #include "ncmul.h"
33 #include "numeric.h"
34 #include "constant.h"
35 #include "operators.h"
36 #include "inifcns.h" // for log() in power::derivative()
37 #include "matrix.h"
38 #include "indexed.h"
39 #include "symbol.h"
40 #include "lst.h"
41 #include "print.h"
42 #include "archive.h"
43 #include "utils.h"
44
45 namespace GiNaC {
46
47 GINAC_IMPLEMENT_REGISTERED_CLASS(power, basic)
48
49 typedef std::vector<int> intvector;
50
51 //////////
52 // default ctor, dtor, copy ctor, assignment operator and helpers
53 //////////
54
55 power::power() : inherited(TINFO_power) { }
56
57 void power::copy(const power & other)
58 {
59         inherited::copy(other);
60         basis = other.basis;
61         exponent = other.exponent;
62 }
63
64 DEFAULT_DESTROY(power)
65
66 //////////
67 // other ctors
68 //////////
69
70 // all inlined
71
72 //////////
73 // archiving
74 //////////
75
76 power::power(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
77 {
78         n.find_ex("basis", basis, sym_lst);
79         n.find_ex("exponent", exponent, sym_lst);
80 }
81
82 void power::archive(archive_node &n) const
83 {
84         inherited::archive(n);
85         n.add_ex("basis", basis);
86         n.add_ex("exponent", exponent);
87 }
88
89 DEFAULT_UNARCHIVE(power)
90
91 //////////
92 // functions overriding virtual functions from base classes
93 //////////
94
95 // public
96
97 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
98 {
99         // Optimal output of integer powers of symbols to aid compiler CSE.
100         // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
101         // to learn why such a parenthisation is really necessary.
102         if (exp == 1) {
103                 x.print(c);
104         } else if (exp == 2) {
105                 x.print(c);
106                 c.s << "*";
107                 x.print(c);
108         } else if (exp & 1) {
109                 x.print(c);
110                 c.s << "*";
111                 print_sym_pow(c, x, exp-1);
112         } else {
113                 c.s << "(";
114                 print_sym_pow(c, x, exp >> 1);
115                 c.s << ")*(";
116                 print_sym_pow(c, x, exp >> 1);
117                 c.s << ")";
118         }
119 }
120
121 void power::print(const print_context & c, unsigned level) const
122 {
123         if (is_a<print_tree>(c)) {
124
125                 inherited::print(c, level);
126
127         } else if (is_a<print_csrc>(c)) {
128
129                 // Integer powers of symbols are printed in a special, optimized way
130                 if (exponent.info(info_flags::integer)
131                  && (is_a<symbol>(basis) || is_a<constant>(basis))) {
132                         int exp = ex_to<numeric>(exponent).to_int();
133                         if (exp > 0)
134                                 c.s << '(';
135                         else {
136                                 exp = -exp;
137                                 if (is_a<print_csrc_cl_N>(c))
138                                         c.s << "recip(";
139                                 else
140                                         c.s << "1.0/(";
141                         }
142                         print_sym_pow(c, ex_to<symbol>(basis), exp);
143                         c.s << ')';
144
145                 // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
146                 } else if (exponent.is_equal(_ex_1)) {
147                         if (is_a<print_csrc_cl_N>(c))
148                                 c.s << "recip(";
149                         else
150                                 c.s << "1.0/(";
151                         basis.print(c);
152                         c.s << ')';
153
154                 // Otherwise, use the pow() or expt() (CLN) functions
155                 } else {
156                         if (is_a<print_csrc_cl_N>(c))
157                                 c.s << "expt(";
158                         else
159                                 c.s << "pow(";
160                         basis.print(c);
161                         c.s << ',';
162                         exponent.print(c);
163                         c.s << ')';
164                 }
165
166         } else if (is_a<print_python_repr>(c)) {
167
168                 c.s << class_name() << '(';
169                 basis.print(c);
170                 c.s << ',';
171                 exponent.print(c);
172                 c.s << ')';
173
174         } else {
175
176                 bool is_tex = is_a<print_latex>(c);
177
178                 if (is_tex && is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_negative()) {
179
180                         // Powers with negative numeric exponents are printed as fractions in TeX
181                         c.s << "\\frac{1}{";
182                         power(basis, -exponent).eval().print(c);
183                         c.s << "}";
184
185                 } else if (exponent.is_equal(_ex1_2)) {
186
187                         // Square roots are printed in a special way
188                         c.s << (is_tex ? "\\sqrt{" : "sqrt(");
189                         basis.print(c);
190                         c.s << (is_tex ? '}' : ')');
191
192                 } else {
193
194                         // Ordinary output of powers using '^' or '**'
195                         if (precedence() <= level)
196                                 c.s << (is_tex ? "{(" : "(");
197                         basis.print(c, precedence());
198                         if (is_a<print_python>(c))
199                                 c.s << "**";
200                         else
201                                 c.s << '^';
202                         if (is_tex)
203                                 c.s << '{';
204                         exponent.print(c, precedence());
205                         if (is_tex)
206                                 c.s << '}';
207                         if (precedence() <= level)
208                                 c.s << (is_tex ? ")}" : ")");
209                 }
210         }
211 }
212
213 bool power::info(unsigned inf) const
214 {
215         switch (inf) {
216                 case info_flags::polynomial:
217                 case info_flags::integer_polynomial:
218                 case info_flags::cinteger_polynomial:
219                 case info_flags::rational_polynomial:
220                 case info_flags::crational_polynomial:
221                         return exponent.info(info_flags::nonnegint);
222                 case info_flags::rational_function:
223                         return exponent.info(info_flags::integer);
224                 case info_flags::algebraic:
225                         return (!exponent.info(info_flags::integer) ||
226                                         basis.info(inf));
227         }
228         return inherited::info(inf);
229 }
230
231 unsigned power::nops() const
232 {
233         return 2;
234 }
235
236 ex & power::let_op(int i)
237 {
238         GINAC_ASSERT(i>=0);
239         GINAC_ASSERT(i<2);
240
241         return i==0 ? basis : exponent;
242 }
243
244 ex power::map(map_function & f) const
245 {
246         return (new power(f(basis), f(exponent)))->setflag(status_flags::dynallocated);
247 }
248
249 int power::degree(const ex & s) const
250 {
251         if (is_equal(ex_to<basic>(s)))
252                 return 1;
253         else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
254                 if (basis.is_equal(s))
255                         return ex_to<numeric>(exponent).to_int();
256                 else
257                         return basis.degree(s) * ex_to<numeric>(exponent).to_int();
258         } else if (basis.has(s))
259                 throw(std::runtime_error("power::degree(): undefined degree because of non-integer exponent"));
260         else
261                 return 0;
262 }
263
264 int power::ldegree(const ex & s) const 
265 {
266         if (is_equal(ex_to<basic>(s)))
267                 return 1;
268         else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
269                 if (basis.is_equal(s))
270                         return ex_to<numeric>(exponent).to_int();
271                 else
272                         return basis.ldegree(s) * ex_to<numeric>(exponent).to_int();
273         } else if (basis.has(s))
274                 throw(std::runtime_error("power::ldegree(): undefined degree because of non-integer exponent"));
275         else
276                 return 0;
277 }
278
279 ex power::coeff(const ex & s, int n) const
280 {
281         if (is_equal(ex_to<basic>(s)))
282                 return n==1 ? _ex1 : _ex0;
283         else if (!basis.is_equal(s)) {
284                 // basis not equal to s
285                 if (n == 0)
286                         return *this;
287                 else
288                         return _ex0;
289         } else {
290                 // basis equal to s
291                 if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
292                         // integer exponent
293                         int int_exp = ex_to<numeric>(exponent).to_int();
294                         if (n == int_exp)
295                                 return _ex1;
296                         else
297                                 return _ex0;
298                 } else {
299                         // non-integer exponents are treated as zero
300                         if (n == 0)
301                                 return *this;
302                         else
303                                 return _ex0;
304                 }
305         }
306 }
307
308 /** Perform automatic term rewriting rules in this class.  In the following
309  *  x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2...
310  *  stand for such expressions that contain a plain number.
311  *  - ^(x,0) -> 1  (also handles ^(0,0))
312  *  - ^(x,1) -> x
313  *  - ^(0,c) -> 0 or exception  (depending on the real part of c)
314  *  - ^(1,x) -> 1
315  *  - ^(c1,c2) -> *(c1^n,c1^(c2-n))  (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1)
316  *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
317  *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
318  *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
319  *  - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2  (c1<0)
320  *
321  *  @param level cut-off in recursive evaluation */
322 ex power::eval(int level) const
323 {
324         if ((level==1) && (flags & status_flags::evaluated))
325                 return *this;
326         else if (level == -max_recursion_level)
327                 throw(std::runtime_error("max recursion level reached"));
328         
329         const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
330         const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
331         
332         bool basis_is_numerical = false;
333         bool exponent_is_numerical = false;
334         const numeric *num_basis;
335         const numeric *num_exponent;
336         
337         if (is_exactly_a<numeric>(ebasis)) {
338                 basis_is_numerical = true;
339                 num_basis = &ex_to<numeric>(ebasis);
340         }
341         if (is_exactly_a<numeric>(eexponent)) {
342                 exponent_is_numerical = true;
343                 num_exponent = &ex_to<numeric>(eexponent);
344         }
345         
346         // ^(x,0) -> 1  (0^0 also handled here)
347         if (eexponent.is_zero()) {
348                 if (ebasis.is_zero())
349                         throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
350                 else
351                         return _ex1;
352         }
353         
354         // ^(x,1) -> x
355         if (eexponent.is_equal(_ex1))
356                 return ebasis;
357
358         // ^(0,c1) -> 0 or exception  (depending on real value of c1)
359         if (ebasis.is_zero() && exponent_is_numerical) {
360                 if ((num_exponent->real()).is_zero())
361                         throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
362                 else if ((num_exponent->real()).is_negative())
363                         throw (pole_error("power::eval(): division by zero",1));
364                 else
365                         return _ex0;
366         }
367
368         // ^(1,x) -> 1
369         if (ebasis.is_equal(_ex1))
370                 return _ex1;
371
372         if (exponent_is_numerical) {
373
374                 // ^(c1,c2) -> c1^c2  (c1, c2 numeric(),
375                 // except if c1,c2 are rational, but c1^c2 is not)
376                 if (basis_is_numerical) {
377                         const bool basis_is_crational = num_basis->is_crational();
378                         const bool exponent_is_crational = num_exponent->is_crational();
379                         if (!basis_is_crational || !exponent_is_crational) {
380                                 // return a plain float
381                                 return (new numeric(num_basis->power(*num_exponent)))->setflag(status_flags::dynallocated |
382                                                                                                status_flags::evaluated |
383                                                                                                status_flags::expanded);
384                         }
385
386                         const numeric res = num_basis->power(*num_exponent);
387                         if (res.is_crational()) {
388                                 return res;
389                         }
390                         GINAC_ASSERT(!num_exponent->is_integer());  // has been handled by now
391
392                         // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-q)<1, q integer
393                         if (basis_is_crational && exponent_is_crational
394                             && num_exponent->is_real()
395                             && !num_exponent->is_integer()) {
396                                 const numeric n = num_exponent->numer();
397                                 const numeric m = num_exponent->denom();
398                                 numeric r;
399                                 numeric q = iquo(n, m, r);
400                                 if (r.is_negative()) {
401                                         r += m;
402                                         --q;
403                                 }
404                                 if (q.is_zero()) {  // the exponent was in the allowed range 0<(n/m)<1
405                                         if (num_basis->is_rational() && !num_basis->is_integer()) {
406                                                 // try it for numerator and denominator separately, in order to
407                                                 // partially simplify things like (5/8)^(1/3) -> 1/2*5^(1/3)
408                                                 const numeric bnum = num_basis->numer();
409                                                 const numeric bden = num_basis->denom();
410                                                 const numeric res_bnum = bnum.power(*num_exponent);
411                                                 const numeric res_bden = bden.power(*num_exponent);
412                                                 if (res_bnum.is_integer())
413                                                         return (new mul(power(bden,-*num_exponent),res_bnum))->setflag(status_flags::dynallocated | status_flags::evaluated);
414                                                 if (res_bden.is_integer())
415                                                         return (new mul(power(bnum,*num_exponent),res_bden.inverse()))->setflag(status_flags::dynallocated | status_flags::evaluated);
416                                         }
417                                         return this->hold();
418                                 } else {
419                                         // assemble resulting product, but allowing for a re-evaluation,
420                                         // because otherwise we'll end up with something like
421                                         //    (7/8)^(4/3)  ->  7/8*(1/2*7^(1/3))
422                                         // instead of 7/16*7^(1/3).
423                                         ex prod = power(*num_basis,r.div(m));
424                                         return prod*power(*num_basis,q);
425                                 }
426                         }
427                 }
428         
429                 // ^(^(x,c1),c2) -> ^(x,c1*c2)
430                 // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
431                 // case c1==1 should not happen, see below!)
432                 if (is_exactly_a<power>(ebasis)) {
433                         const power & sub_power = ex_to<power>(ebasis);
434                         const ex & sub_basis = sub_power.basis;
435                         const ex & sub_exponent = sub_power.exponent;
436                         if (is_exactly_a<numeric>(sub_exponent)) {
437                                 const numeric & num_sub_exponent = ex_to<numeric>(sub_exponent);
438                                 GINAC_ASSERT(num_sub_exponent!=numeric(1));
439                                 if (num_exponent->is_integer() || (abs(num_sub_exponent) - _num1).is_negative())
440                                         return power(sub_basis,num_sub_exponent.mul(*num_exponent));
441                         }
442                 }
443         
444                 // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
445                 if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
446                         return expand_mul(ex_to<mul>(ebasis), *num_exponent);
447                 }
448         
449                 // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
450                 // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
451                 if (is_exactly_a<mul>(ebasis)) {
452                         GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
453                         const mul & mulref = ex_to<mul>(ebasis);
454                         if (!mulref.overall_coeff.is_equal(_ex1)) {
455                                 const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
456                                 if (num_coeff.is_real()) {
457                                         if (num_coeff.is_positive()) {
458                                                 mul *mulp = new mul(mulref);
459                                                 mulp->overall_coeff = _ex1;
460                                                 mulp->clearflag(status_flags::evaluated);
461                                                 mulp->clearflag(status_flags::hash_calculated);
462                                                 return (new mul(power(*mulp,exponent),
463                                                                 power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
464                                         } else {
465                                                 GINAC_ASSERT(num_coeff.compare(_num0)<0);
466                                                 if (!num_coeff.is_equal(_num_1)) {
467                                                         mul *mulp = new mul(mulref);
468                                                         mulp->overall_coeff = _ex_1;
469                                                         mulp->clearflag(status_flags::evaluated);
470                                                         mulp->clearflag(status_flags::hash_calculated);
471                                                         return (new mul(power(*mulp,exponent),
472                                                                         power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated);
473                                                 }
474                                         }
475                                 }
476                         }
477                 }
478
479                 // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix)
480                 if (num_exponent->is_pos_integer() &&
481                     ebasis.return_type() != return_types::commutative &&
482                     !is_a<matrix>(ebasis)) {
483                         return ncmul(exvector(num_exponent->to_int(), ebasis), true);
484                 }
485         }
486         
487         if (are_ex_trivially_equal(ebasis,basis) &&
488             are_ex_trivially_equal(eexponent,exponent)) {
489                 return this->hold();
490         }
491         return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
492                                                        status_flags::evaluated);
493 }
494
495 ex power::evalf(int level) const
496 {
497         ex ebasis;
498         ex eexponent;
499         
500         if (level==1) {
501                 ebasis = basis;
502                 eexponent = exponent;
503         } else if (level == -max_recursion_level) {
504                 throw(std::runtime_error("max recursion level reached"));
505         } else {
506                 ebasis = basis.evalf(level-1);
507                 if (!is_exactly_a<numeric>(exponent))
508                         eexponent = exponent.evalf(level-1);
509                 else
510                         eexponent = exponent;
511         }
512
513         return power(ebasis,eexponent);
514 }
515
516 ex power::evalm(void) const
517 {
518         const ex ebasis = basis.evalm();
519         const ex eexponent = exponent.evalm();
520         if (is_a<matrix>(ebasis)) {
521                 if (is_exactly_a<numeric>(eexponent)) {
522                         return (new matrix(ex_to<matrix>(ebasis).pow(eexponent)))->setflag(status_flags::dynallocated);
523                 }
524         }
525         return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated);
526 }
527
528 extern bool tryfactsubs(const ex &, const ex &, unsigned &, lst &);
529
530 ex power::subs(const lst & ls, const lst & lr, unsigned options) const
531 {
532         if (options & subs_options::subs_algebraic) {
533                 for (int i=0; i<ls.nops(); i++) {
534                         unsigned nummatches = std::numeric_limits<unsigned>::max();
535                         lst repls;
536                         if (tryfactsubs(*this, ls.op(i), nummatches, repls))
537                                 return (ex_to<basic>((*this) * power(lr.op(i).subs(ex(repls), subs_options::subs_no_pattern) / ls.op(i).subs(ex(repls), subs_options::subs_no_pattern), nummatches))).basic::subs(ls, lr, options);
538                 }
539                 return basic::subs(ls, lr, options);
540         }
541
542         const ex &subsed_basis = basis.subs(ls, lr, options);
543         const ex &subsed_exponent = exponent.subs(ls, lr, options);
544
545         if (are_ex_trivially_equal(basis, subsed_basis)
546          && are_ex_trivially_equal(exponent, subsed_exponent))
547                 return basic::subs(ls, lr, options);
548         else
549                 return power(subsed_basis, subsed_exponent).basic::subs(ls, lr, options);
550 }
551
552 ex power::eval_ncmul(const exvector & v) const
553 {
554         return inherited::eval_ncmul(v);
555 }
556
557 // protected
558
559 /** Implementation of ex::diff() for a power.
560  *  @see ex::diff */
561 ex power::derivative(const symbol & s) const
562 {
563         if (exponent.info(info_flags::real)) {
564                 // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
565                 epvector newseq;
566                 newseq.reserve(2);
567                 newseq.push_back(expair(basis, exponent - _ex1));
568                 newseq.push_back(expair(basis.diff(s), _ex1));
569                 return mul(newseq, exponent);
570         } else {
571                 // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
572                 return mul(*this,
573                            add(mul(exponent.diff(s), log(basis)),
574                            mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
575         }
576 }
577
578 int power::compare_same_type(const basic & other) const
579 {
580         GINAC_ASSERT(is_exactly_a<power>(other));
581         const power &o = static_cast<const power &>(other);
582
583         int cmpval = basis.compare(o.basis);
584         if (cmpval)
585                 return cmpval;
586         else
587                 return exponent.compare(o.exponent);
588 }
589
590 unsigned power::return_type(void) const
591 {
592         return basis.return_type();
593 }
594    
595 unsigned power::return_type_tinfo(void) const
596 {
597         return basis.return_type_tinfo();
598 }
599
600 ex power::expand(unsigned options) const
601 {
602         if (options == 0 && (flags & status_flags::expanded))
603                 return *this;
604         
605         const ex expanded_basis = basis.expand(options);
606         const ex expanded_exponent = exponent.expand(options);
607         
608         // x^(a+b) -> x^a * x^b
609         if (is_exactly_a<add>(expanded_exponent)) {
610                 const add &a = ex_to<add>(expanded_exponent);
611                 exvector distrseq;
612                 distrseq.reserve(a.seq.size() + 1);
613                 epvector::const_iterator last = a.seq.end();
614                 epvector::const_iterator cit = a.seq.begin();
615                 while (cit!=last) {
616                         distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
617                         ++cit;
618                 }
619                 
620                 // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
621                 if (ex_to<numeric>(a.overall_coeff).is_integer()) {
622                         const numeric &num_exponent = ex_to<numeric>(a.overall_coeff);
623                         int int_exponent = num_exponent.to_int();
624                         if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
625                                 distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent));
626                         else
627                                 distrseq.push_back(power(expanded_basis, a.overall_coeff));
628                 } else
629                         distrseq.push_back(power(expanded_basis, a.overall_coeff));
630                 
631                 // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
632                 ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
633                 return r.expand();
634         }
635         
636         if (!is_exactly_a<numeric>(expanded_exponent) ||
637                 !ex_to<numeric>(expanded_exponent).is_integer()) {
638                 if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
639                         return this->hold();
640                 } else {
641                         return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
642                 }
643         }
644         
645         // integer numeric exponent
646         const numeric & num_exponent = ex_to<numeric>(expanded_exponent);
647         int int_exponent = num_exponent.to_int();
648         
649         // (x+y)^n, n>0
650         if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
651                 return expand_add(ex_to<add>(expanded_basis), int_exponent);
652         
653         // (x*y)^n -> x^n * y^n
654         if (is_exactly_a<mul>(expanded_basis))
655                 return expand_mul(ex_to<mul>(expanded_basis), num_exponent);
656         
657         // cannot expand further
658         if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
659                 return this->hold();
660         else
661                 return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
662 }
663
664 //////////
665 // new virtual functions which can be overridden by derived classes
666 //////////
667
668 // none
669
670 //////////
671 // non-virtual functions in this class
672 //////////
673
674 /** expand a^n where a is an add and n is a positive integer.
675  *  @see power::expand */
676 ex power::expand_add(const add & a, int n) const
677 {
678         if (n==2)
679                 return expand_add_2(a);
680
681         const int m = a.nops();
682         exvector result;
683         // The number of terms will be the number of combinatorial compositions,
684         // i.e. the number of unordered arrangement of m nonnegative integers
685         // which sum up to n.  It is frequently written as C_n(m) and directly
686         // related with binomial coefficients:
687         result.reserve(binomial(numeric(n+m-1), numeric(m-1)).to_int());
688         intvector k(m-1);
689         intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
690         intvector upper_limit(m-1);
691         int l;
692
693         for (int l=0; l<m-1; ++l) {
694                 k[l] = 0;
695                 k_cum[l] = 0;
696                 upper_limit[l] = n;
697         }
698
699         while (true) {
700                 exvector term;
701                 term.reserve(m+1);
702                 for (l=0; l<m-1; ++l) {
703                         const ex & b = a.op(l);
704                         GINAC_ASSERT(!is_exactly_a<add>(b));
705                         GINAC_ASSERT(!is_exactly_a<power>(b) ||
706                                      !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
707                                      !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
708                                      !is_exactly_a<add>(ex_to<power>(b).basis) ||
709                                      !is_exactly_a<mul>(ex_to<power>(b).basis) ||
710                                      !is_exactly_a<power>(ex_to<power>(b).basis));
711                         if (is_exactly_a<mul>(b))
712                                 term.push_back(expand_mul(ex_to<mul>(b),numeric(k[l])));
713                         else
714                                 term.push_back(power(b,k[l]));
715                 }
716
717                 const ex & b = a.op(l);
718                 GINAC_ASSERT(!is_exactly_a<add>(b));
719                 GINAC_ASSERT(!is_exactly_a<power>(b) ||
720                              !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
721                              !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
722                              !is_exactly_a<add>(ex_to<power>(b).basis) ||
723                              !is_exactly_a<mul>(ex_to<power>(b).basis) ||
724                              !is_exactly_a<power>(ex_to<power>(b).basis));
725                 if (is_exactly_a<mul>(b))
726                         term.push_back(expand_mul(ex_to<mul>(b),numeric(n-k_cum[m-2])));
727                 else
728                         term.push_back(power(b,n-k_cum[m-2]));
729
730                 numeric f = binomial(numeric(n),numeric(k[0]));
731                 for (l=1; l<m-1; ++l)
732                         f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
733
734                 term.push_back(f);
735
736                 result.push_back((new mul(term))->setflag(status_flags::dynallocated));
737
738                 // increment k[]
739                 l = m-2;
740                 while ((l>=0) && ((++k[l])>upper_limit[l])) {
741                         k[l] = 0;
742                         --l;
743                 }
744                 if (l<0) break;
745
746                 // recalc k_cum[] and upper_limit[]
747                 k_cum[l] = (l==0 ? k[0] : k_cum[l-1]+k[l]);
748
749                 for (int i=l+1; i<m-1; ++i)
750                         k_cum[i] = k_cum[i-1]+k[i];
751
752                 for (int i=l+1; i<m-1; ++i)
753                         upper_limit[i] = n-k_cum[i-1];
754         }
755
756         return (new add(result))->setflag(status_flags::dynallocated |
757                                           status_flags::expanded);
758 }
759
760
761 /** Special case of power::expand_add. Expands a^2 where a is an add.
762  *  @see power::expand_add */
763 ex power::expand_add_2(const add & a) const
764 {
765         epvector sum;
766         unsigned a_nops = a.nops();
767         sum.reserve((a_nops*(a_nops+1))/2);
768         epvector::const_iterator last = a.seq.end();
769
770         // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
771         // first part: ignore overall_coeff and expand other terms
772         for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
773                 const ex & r = cit0->rest;
774                 const ex & c = cit0->coeff;
775                 
776                 GINAC_ASSERT(!is_exactly_a<add>(r));
777                 GINAC_ASSERT(!is_exactly_a<power>(r) ||
778                              !is_exactly_a<numeric>(ex_to<power>(r).exponent) ||
779                              !ex_to<numeric>(ex_to<power>(r).exponent).is_pos_integer() ||
780                              !is_exactly_a<add>(ex_to<power>(r).basis) ||
781                              !is_exactly_a<mul>(ex_to<power>(r).basis) ||
782                              !is_exactly_a<power>(ex_to<power>(r).basis));
783                 
784                 if (c.is_equal(_ex1)) {
785                         if (is_exactly_a<mul>(r)) {
786                                 sum.push_back(expair(expand_mul(ex_to<mul>(r),_num2),
787                                                      _ex1));
788                         } else {
789                                 sum.push_back(expair((new power(r,_ex2))->setflag(status_flags::dynallocated),
790                                                      _ex1));
791                         }
792                 } else {
793                         if (is_exactly_a<mul>(r)) {
794                                 sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r),_num2),
795                                                      ex_to<numeric>(c).power_dyn(_num2)));
796                         } else {
797                                 sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
798                                                      ex_to<numeric>(c).power_dyn(_num2)));
799                         }
800                 }
801
802                 for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
803                         const ex & r1 = cit1->rest;
804                         const ex & c1 = cit1->coeff;
805                         sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
806                                                                       _num2.mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
807                 }
808         }
809         
810         GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
811         
812         // second part: add terms coming from overall_factor (if != 0)
813         if (!a.overall_coeff.is_zero()) {
814                 epvector::const_iterator i = a.seq.begin(), end = a.seq.end();
815                 while (i != end) {
816                         sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(_num2)));
817                         ++i;
818                 }
819                 sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(_num2),_ex1));
820         }
821         
822         GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
823         
824         return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
825 }
826
827 /** Expand factors of m in m^n where m is a mul and n is and integer.
828  *  @see power::expand */
829 ex power::expand_mul(const mul & m, const numeric & n) const
830 {
831         GINAC_ASSERT(n.is_integer());
832
833         if (n.is_zero())
834                 return _ex1;
835
836         epvector distrseq;
837         distrseq.reserve(m.seq.size());
838         epvector::const_iterator last = m.seq.end();
839         epvector::const_iterator cit = m.seq.begin();
840         while (cit!=last) {
841                 if (is_exactly_a<numeric>(cit->rest)) {
842                         distrseq.push_back(m.combine_pair_with_coeff_to_pair(*cit, n));
843                 } else {
844                         // it is safe not to call mul::combine_pair_with_coeff_to_pair()
845                         // since n is an integer
846                         distrseq.push_back(expair(cit->rest, ex_to<numeric>(cit->coeff).mul(n)));
847                 }
848                 ++cit;
849         }
850         return (new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated);
851 }
852
853 } // namespace GiNaC