Go to the documentation of this file.
26 #ifndef GINAC_NORMAL_H
27 #define GINAC_NORMAL_H
70 extern ex
quo(
const ex &a,
const ex &b,
const ex &
x,
bool check_args =
true);
73 extern ex
rem(
const ex &a,
const ex &b,
const ex &
x,
bool check_args =
true);
79 extern ex
prem(
const ex &a,
const ex &b,
const ex &
x,
bool check_args =
true);
82 extern ex
sprem(
const ex &a,
const ex &b,
const ex &
x,
bool check_args =
true);
85 extern bool divide(
const ex &a,
const ex &b, ex &q,
bool check_args =
true);
88 extern ex
gcd(
const ex &a,
const ex &b, ex *ca =
nullptr, ex *cb =
nullptr,
89 bool check_args =
true,
unsigned options = 0);
92 extern ex
lcm(
const ex &a,
const ex &b,
bool check_args =
true);
104 extern ex
resultant(
const ex & e1,
const ex & e2,
const ex & s);
108 #endif // ndef GINAC_NORMAL_H
container< std::list > lst
ex quo(const ex &a, const ex &b, const ex &x, bool check_args)
Quotient q(x) of polynomials a(x) and b(x) in Q[x].
ex sqrfree(const ex &a, const lst &l)
Compute a square-free factorization of a multivariate polynomial in Q[X].
ex resultant(const ex &e1, const ex &e2, const ex &s)
Resultant of two expressions e1,e2 with respect to symbol s.
@ no_heur_gcd
Usually GiNaC tries heuristic GCD first, because typically it's much faster than anything else.
@ no_part_factored
GiNaC tries to avoid expanding expressions when computing GCDs.
ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned options)
Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X) and b(X) in Z[X].
Definition of GiNaC's lst.
ex rem(const ex &a, const ex &b, const ex &x, bool check_args)
Remainder r(x) of polynomials a(x) and b(x) in Q[x].
ex collect_common_factors(const ex &e)
Collect common factors in sums.
ex sqrfree_parfrac(const ex &a, const symbol &x)
Compute square-free partial fraction decomposition of rational function a(x).
Flags to control the behavior of gcd() and friends.
ex lcm(const ex &a, const ex &b, bool check_args)
Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X].
ex decomp_rational(const ex &a, const ex &x)
Decompose rational function a(x)=N(x)/D(x) into P(x)+n(x)/D(x) with degree(n, x) < degree(D,...
bool divide(const ex &a, const ex &b, ex &q, bool check_args)
Exact polynomial division of a(X) by b(X) in Q[X].
ex sprem(const ex &a, const ex &b, const ex &x, bool check_args)
Sparse pseudo-remainder of polynomials a(x) and b(x) in Q[x].
@ use_sr_gcd
By default GiNaC uses modular GCD algorithm.
ex prem(const ex &a, const ex &b, const ex &x, bool check_args)
Pseudo-remainder of polynomials a(x) and b(x) in Q[x].
This page is part of the GiNaC
developer's reference. It was generated automatically by doxygen. For
an introduction, see the tutorial.