GiNaC 1.8.10
numeric.h
Go to the documentation of this file.
1
5/*
6 * GiNaC Copyright (C) 1999-2026 Johannes Gutenberg University Mainz, Germany
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <https://www.gnu.org/licenses/>.
20 */
21
22#ifndef GINAC_NUMERIC_H
23#define GINAC_NUMERIC_H
24
25#include "basic.h"
26#include "ex.h"
27#include "archive.h"
28
29#include <cln/complex.h>
30#include <stdexcept>
31#include <vector>
32
33namespace GiNaC {
34
39typedef void (* digits_changed_callback)(long);
40
51{
52// member functions
53public:
55 _numeric_digits& operator=(long prec);
56 operator long();
57 void print(std::ostream& os) const;
59// member variables
60private:
61 long digits;
62 static bool too_late;
63 // Holds a list of functions that get called when digits is changed.
64 std::vector<digits_changed_callback> callbacklist;
65};
66
67
69class pole_error : public std::domain_error {
70public:
71 explicit pole_error(const std::string& what_arg, int degree);
72 int degree() const;
73private:
74 int deg;
75};
76
77
80class numeric : public basic
81{
83
84// member functions
85
86 // other constructors
87public:
88 numeric(int i);
89 numeric(unsigned int i);
90 numeric(long i);
91 numeric(unsigned long i);
92 numeric(long long i);
93 numeric(unsigned long long i);
94 numeric(long numer, long denom);
95 numeric(double d);
96 numeric(const char *);
97
98 // functions overriding virtual functions from base classes
99public:
100 unsigned precedence() const override {return 30;}
101 bool info(unsigned inf) const override;
102 bool is_polynomial(const ex & var) const override;
103 int degree(const ex & s) const override;
104 int ldegree(const ex & s) const override;
105 ex coeff(const ex & s, int n = 1) const override;
106 bool has(const ex &other, unsigned options = 0) const override;
107 ex eval() const override;
108 ex evalf() const override;
109 ex subs(const exmap & m, unsigned options = 0) const override { return subs_one_level(m, options); } // overwrites basic::subs() for performance reasons
110 ex normal(exmap & repl, exmap & rev_lookup, lst & modifier) const override;
111 ex to_rational(exmap & repl) const override;
112 ex to_polynomial(exmap & repl) const override;
113 numeric integer_content() const override;
114 ex smod(const numeric &xi) const override;
115 numeric max_coefficient() const override;
116 ex conjugate() const override;
117 ex real_part() const override;
118 ex imag_part() const override;
120 void archive(archive_node& n) const override;
122 void read_archive(const archive_node& n, lst& syms) override;
123protected:
126 ex derivative(const symbol &s) const override { return 0; }
127 bool is_equal_same_type(const basic &other) const override;
128 unsigned calchash() const override;
129
130 // new virtual functions which can be overridden by derived classes
131 // (none)
132
133 // non-virtual functions in this class
134public:
135 const numeric add(const numeric &other) const;
136 const numeric sub(const numeric &other) const;
137 const numeric mul(const numeric &other) const;
138 const numeric div(const numeric &other) const;
139 const numeric power(const numeric &other) const;
140 const numeric & add_dyn(const numeric &other) const;
141 const numeric & sub_dyn(const numeric &other) const;
142 const numeric & mul_dyn(const numeric &other) const;
143 const numeric & div_dyn(const numeric &other) const;
144 const numeric & power_dyn(const numeric &other) const;
145 const numeric & operator=(int i);
146 const numeric & operator=(unsigned int i);
147 const numeric & operator=(long i);
148 const numeric & operator=(unsigned long i);
149 const numeric & operator=(double d);
150 const numeric & operator=(const char *s);
151 const numeric inverse() const;
152 numeric step() const;
153 int csgn() const;
154 int compare(const numeric &other) const;
155 bool is_equal(const numeric &other) const;
156 bool is_zero() const;
157 bool is_positive() const;
158 bool is_negative() const;
159 bool is_integer() const;
160 bool is_pos_integer() const;
161 bool is_nonneg_integer() const;
162 bool is_even() const;
163 bool is_odd() const;
164 bool is_prime() const;
165 bool is_rational() const;
166 bool is_real() const;
167 bool is_cinteger() const;
168 bool is_crational() const;
169 bool operator==(const numeric &other) const;
170 bool operator!=(const numeric &other) const;
171 bool operator<(const numeric &other) const;
172 bool operator<=(const numeric &other) const;
173 bool operator>(const numeric &other) const;
174 bool operator>=(const numeric &other) const;
175 int to_int() const;
176 long to_long() const;
177 double to_double() const;
178 cln::cl_N to_cl_N() const;
179 const numeric real() const;
180 const numeric imag() const;
181 const numeric numer() const;
182 const numeric denom() const;
183 int int_length() const;
184 // converting routines for interfacing with CLN:
185 explicit numeric(const cln::cl_N &z);
186
187protected:
188 void print_numeric(const print_context & c, const char *par_open, const char *par_close, const char *imag_sym, const char *mul_sym, unsigned level) const;
189 void do_print(const print_context & c, unsigned level) const;
190 void do_print_latex(const print_latex & c, unsigned level) const;
191 void do_print_csrc(const print_csrc & c, unsigned level) const;
192 void do_print_csrc_cl_N(const print_csrc_cl_N & c, unsigned level) const;
193 void do_print_tree(const print_tree & c, unsigned level) const;
194 void do_print_python_repr(const print_python_repr & c, unsigned level) const;
195
196// member variables
197
198protected:
199 cln::cl_N value;
200};
202
203
204// global constants
205
206extern const numeric I;
208
209// global functions
210
211const numeric exp(const numeric &x);
212const numeric log(const numeric &x);
213const numeric sin(const numeric &x);
214const numeric cos(const numeric &x);
215const numeric tan(const numeric &x);
216const numeric asin(const numeric &x);
217const numeric acos(const numeric &x);
218const numeric atan(const numeric &x);
219const numeric atan(const numeric &y, const numeric &x);
220const numeric sinh(const numeric &x);
221const numeric cosh(const numeric &x);
222const numeric tanh(const numeric &x);
223const numeric asinh(const numeric &x);
224const numeric acosh(const numeric &x);
225const numeric atanh(const numeric &x);
226const numeric Li2(const numeric &x);
227const numeric zeta(const numeric &x);
228const numeric lgamma(const numeric &x);
229const numeric tgamma(const numeric &x);
230const numeric psi(const numeric &x);
231const numeric psi(const numeric &n, const numeric &x);
232const numeric factorial(const numeric &n);
233const numeric doublefactorial(const numeric &n);
234const numeric binomial(const numeric &n, const numeric &k);
235const numeric bernoulli(const numeric &n);
236const numeric fibonacci(const numeric &n);
237const numeric isqrt(const numeric &x);
238const numeric sqrt(const numeric &x);
239const numeric abs(const numeric &x);
240const numeric mod(const numeric &a, const numeric &b);
241const numeric smod(const numeric &a, const numeric &b);
242const numeric irem(const numeric &a, const numeric &b);
243const numeric irem(const numeric &a, const numeric &b, numeric &q);
244const numeric iquo(const numeric &a, const numeric &b);
245const numeric iquo(const numeric &a, const numeric &b, numeric &r);
246const numeric gcd(const numeric &a, const numeric &b);
247const numeric lcm(const numeric &a, const numeric &b);
248
249// wrapper functions around member functions
250inline const numeric pow(const numeric &x, const numeric &y)
251{ return x.power(y); }
252
253inline const numeric inverse(const numeric &x)
254{ return x.inverse(); }
255
256inline numeric step(const numeric &x)
257{ return x.step(); }
258
259inline int csgn(const numeric &x)
260{ return x.csgn(); }
261
262inline bool is_zero(const numeric &x)
263{ return x.is_zero(); }
264
265inline bool is_positive(const numeric &x)
266{ return x.is_positive(); }
267
268inline bool is_negative(const numeric &x)
269{ return x.is_negative(); }
270
271inline bool is_integer(const numeric &x)
272{ return x.is_integer(); }
273
274inline bool is_pos_integer(const numeric &x)
275{ return x.is_pos_integer(); }
276
277inline bool is_nonneg_integer(const numeric &x)
278{ return x.is_nonneg_integer(); }
279
280inline bool is_even(const numeric &x)
281{ return x.is_even(); }
282
283inline bool is_odd(const numeric &x)
284{ return x.is_odd(); }
285
286inline bool is_prime(const numeric &x)
287{ return x.is_prime(); }
288
289inline bool is_rational(const numeric &x)
290{ return x.is_rational(); }
291
292inline bool is_real(const numeric &x)
293{ return x.is_real(); }
294
295inline bool is_cinteger(const numeric &x)
296{ return x.is_cinteger(); }
297
298inline bool is_crational(const numeric &x)
299{ return x.is_crational(); }
300
301inline int to_int(const numeric &x)
302{ return x.to_int(); }
303
304inline long to_long(const numeric &x)
305{ return x.to_long(); }
306
307inline double to_double(const numeric &x)
308{ return x.to_double(); }
309
310inline const numeric real(const numeric &x)
311{ return x.real(); }
312
313inline const numeric imag(const numeric &x)
314{ return x.imag(); }
315
316inline const numeric numer(const numeric &x)
317{ return x.numer(); }
318
319inline const numeric denom(const numeric &x)
320{ return x.denom(); }
321
322// numeric evaluation functions for class constant objects:
323
324ex PiEvalf();
325ex EulerEvalf();
326ex CatalanEvalf();
327
328
329} // namespace GiNaC
330
331#endif // ndef GINAC_NUMERIC_H
Archiving of GiNaC expressions.
#define GINAC_DECLARE_UNARCHIVER(classname)
Helper macros to register a class with (un)archiving (a.k.a.
Definition archive.h:218
Interface to GiNaC's ABC.
This class is used to instantiate a global singleton object Digits which behaves just like Maple's Di...
Definition numeric.h:51
_numeric_digits & operator=(long prec)
Assign a native long to global Digits object.
Definition numeric.cpp:2536
_numeric_digits()
_numeric_digits default ctor, checking for singleton invariance.
Definition numeric.cpp:2519
std::vector< digits_changed_callback > callbacklist
Definition numeric.h:64
void print(std::ostream &os) const
Append global Digits object to ostream.
Definition numeric.cpp:2560
static bool too_late
Already one object present.
Definition numeric.h:62
void add_callback(digits_changed_callback callback)
Add a new callback function.
Definition numeric.cpp:2567
long digits
Number of decimal digits.
Definition numeric.h:61
Sum of expressions.
Definition add.h:31
This class stores all properties needed to record/retrieve the state of one object of class basic (or...
Definition archive.h:48
This class holds archived versions of GiNaC expressions (class ex).
Definition archive.h:254
This class is the ABC (abstract base class) of GiNaC's class hierarchy.
Definition basic.h:104
ex subs_one_level(const exmap &m, unsigned options) const
Helper function for subs().
Definition basic.cpp:584
Wrapper template for making GiNaC classes out of STL containers.
Definition container.h:72
Lightweight wrapper for GiNaC's symbolic objects.
Definition ex.h:72
ex denom() const
Get denominator of an expression.
Definition normal.cpp:2568
bool is_zero() const
Definition ex.h:213
ex numer() const
Get numerator of an expression.
Definition normal.cpp:2543
Product of expressions.
Definition mul.h:31
This class is a wrapper around CLN-numbers within the GiNaC class hierarchy.
Definition numeric.h:81
void do_print(const print_context &c, unsigned level) const
Definition numeric.cpp:604
ex derivative(const symbol &s) const override
Implementation of ex::diff for a numeric always returns 0.
Definition numeric.h:126
bool is_pos_integer() const
True if object is an exact integer greater than zero.
Definition numeric.cpp:1160
const numeric & operator=(int i)
Definition numeric.cpp:1015
void read_archive(const archive_node &n, lst &syms) override
Read (a.k.a.
Definition numeric.cpp:288
const numeric & sub_dyn(const numeric &other) const
Numerical subtraction method.
Definition numeric.cpp:941
unsigned calchash() const override
Compute the hash value of an object and if it makes sense to store it in the objects status_flags,...
Definition numeric.cpp:837
ex subs(const exmap &m, unsigned options=0) const override
Substitute a set of objects by arbitrary expressions.
Definition numeric.h:109
bool is_equal_same_type(const basic &other) const override
Returns true if two objects of same type are equal.
Definition numeric.cpp:828
const numeric sub(const numeric &other) const
Numerical subtraction method.
Definition numeric.cpp:871
const numeric & mul_dyn(const numeric &other) const
Numerical multiplication method.
Definition numeric.cpp:956
void do_print_csrc(const print_csrc &c, unsigned level) const
Definition numeric.cpp:614
bool is_cinteger() const
True if object is element of the domain of integers extended by I, i.e.
Definition numeric.cpp:1227
unsigned precedence() const override
Return relative operator precedence (for parenthezing output).
Definition numeric.h:100
bool is_polynomial(const ex &var) const override
Check whether this is a polynomial in the given variables.
Definition numeric.cpp:727
ex to_rational(exmap &repl) const override
Implementation of ex::to_rational() for a numeric.
Definition normal.cpp:2667
numeric step() const
Return the step function of a numeric.
Definition numeric.cpp:1063
bool is_crational() const
True if object is an exact rational number, may even be complex (denominator may be unity).
Definition numeric.cpp:1242
numeric integer_content() const override
Definition normal.cpp:327
ex imag_part() const override
Definition numeric.cpp:812
bool is_rational() const
True if object is an exact rational number, may even be complex (denominator may be unity).
Definition numeric.cpp:1200
bool operator>(const numeric &other) const
Numerical comparison: greater.
Definition numeric.cpp:1280
bool info(unsigned inf) const override
Information about the object.
Definition numeric.cpp:683
ex real_part() const override
Definition numeric.cpp:807
int ldegree(const ex &s) const override
Return degree of lowest power in object s.
Definition numeric.cpp:737
const numeric real() const
Real part of a number.
Definition numeric.cpp:1338
ex eval() const override
Evaluation of numbers doesn't do anything at all.
Definition numeric.cpp:782
bool is_prime() const
Probabilistic primality test.
Definition numeric.cpp:1190
bool has(const ex &other, unsigned options=0) const override
Disassemble real part and imaginary part to scan for the occurrence of a single number.
Definition numeric.cpp:753
long to_long() const
Converts numeric types to machine's long.
Definition numeric.cpp:1312
void do_print_latex(const print_latex &c, unsigned level) const
Definition numeric.cpp:609
ex to_polynomial(exmap &repl) const override
Implementation of ex::to_polynomial() for a numeric.
Definition normal.cpp:2685
void do_print_tree(const print_tree &c, unsigned level) const
Definition numeric.cpp:668
ex coeff(const ex &s, int n=1) const override
Return coefficient of degree n in object s.
Definition numeric.cpp:742
const numeric & power_dyn(const numeric &other) const
Numerical exponentiation.
Definition numeric.cpp:992
void do_print_python_repr(const print_python_repr &c, unsigned level) const
Definition numeric.cpp:676
int compare(const numeric &other) const
This method establishes a canonical order on all numbers.
Definition numeric.cpp:1103
bool is_nonneg_integer() const
True if object is an exact integer greater or equal zero.
Definition numeric.cpp:1167
bool is_positive() const
True if object is not complex and greater than zero.
Definition numeric.cpp:1135
ex conjugate() const override
Definition numeric.cpp:799
bool is_real() const
True if object is a real integer, rational or float (but not complex).
Definition numeric.cpp:1207
const numeric numer() const
Numerator.
Definition numeric.cpp:1355
cln::cl_N value
Definition numeric.h:199
bool is_integer() const
True if object is a non-complex integer.
Definition numeric.cpp:1153
ex evalf() const override
Cast numeric into a floating-point object.
Definition numeric.cpp:794
ex normal(exmap &repl, exmap &rev_lookup, lst &modifier) const override
Implementation of ex::normal() for a numeric.
Definition normal.cpp:2251
const numeric denom() const
Denominator.
Definition numeric.cpp:1386
bool is_negative() const
True if object is not complex and less than zero.
Definition numeric.cpp:1144
bool is_odd() const
True if object is an exact odd integer.
Definition numeric.cpp:1181
cln::cl_N to_cl_N() const
Returns a new CLN object of type cl_N, representing the value of *this.
Definition numeric.cpp:1331
const numeric imag() const
Imaginary part of a number.
Definition numeric.cpp:1345
bool is_even() const
True if object is an exact even integer.
Definition numeric.cpp:1174
const numeric & add_dyn(const numeric &other) const
Numerical addition method.
Definition numeric.cpp:924
int degree(const ex &s) const override
Return degree of highest power in object s.
Definition numeric.cpp:732
bool operator<=(const numeric &other) const
Numerical comparison: less or equal.
Definition numeric.cpp:1269
int csgn() const
Return the complex half-plane (left or right) in which the number lies.
Definition numeric.cpp:1077
bool operator==(const numeric &other) const
Definition numeric.cpp:1213
bool is_equal(const numeric &other) const
Definition numeric.cpp:1121
const numeric & div_dyn(const numeric &other) const
Numerical division method.
Definition numeric.cpp:975
numeric max_coefficient() const override
Implementation ex::max_coefficient().
Definition normal.cpp:1165
bool operator>=(const numeric &other) const
Numerical comparison: greater or equal.
Definition numeric.cpp:1291
bool operator!=(const numeric &other) const
Definition numeric.cpp:1219
int to_int() const
Converts numeric types to machine's int.
Definition numeric.cpp:1302
int int_length() const
Size in binary notation.
Definition numeric.cpp:1417
void print_numeric(const print_context &c, const char *par_open, const char *par_close, const char *imag_sym, const char *mul_sym, unsigned level) const
Definition numeric.cpp:541
void do_print_csrc_cl_N(const print_csrc_cl_N &c, unsigned level) const
Definition numeric.cpp:650
ex smod(const numeric &xi) const override
Apply symmetric modular homomorphism to an expanded multivariate polynomial.
Definition normal.cpp:1207
double to_double() const
Converts numeric types to machine's double.
Definition numeric.cpp:1321
const numeric inverse() const
Inverse of a number.
Definition numeric.cpp:1052
bool operator<(const numeric &other) const
Numerical comparison: less.
Definition numeric.cpp:1258
bool is_zero() const
True if object is zero.
Definition numeric.cpp:1128
const numeric div(const numeric &other) const
Numerical division method.
Definition numeric.cpp:889
Exception class thrown when a singularity is encountered.
Definition numeric.h:69
int degree() const
Return the degree of the pole_error exception class.
Definition utils.cpp:41
This class holds a two-component object, a basis and and exponent representing exponentiation.
Definition power.h:38
Base class for print_contexts.
Definition print.h:101
Context for C source output using CLN numbers.
Definition print.h:180
Base context for C source output.
Definition print.h:156
Context for latex-parsable output.
Definition print.h:121
Context for python-parsable output.
Definition print.h:137
Context for tree-like output for debugging.
Definition print.h:145
Basic CAS symbol.
Definition symbol.h:38
Interface to GiNaC's light-weight expression handles.
unsigned options
Definition factor.cpp:2473
vector< int > k
Definition factor.cpp:1434
size_t n
Definition factor.cpp:1431
size_t c
Definition factor.cpp:756
ex x
Definition factor.cpp:1609
size_t r
Definition factor.cpp:756
exset syms
Definition factor.cpp:2427
mvec m
Definition factor.cpp:757
Definition add.cpp:35
bool is_zero(const ex &thisex)
Definition ex.h:835
const numeric I
Imaginary unit.
Definition numeric.cpp:1432
const numeric atan(const numeric &x)
Numeric arcustangent.
Definition numeric.cpp:1507
ex denom(const ex &thisex)
Definition ex.h:763
const numeric pow(const numeric &x, const numeric &y)
Definition numeric.h:250
std::map< ex, ex, ex_is_less > exmap
Definition basic.h:49
const numeric bernoulli(const numeric &nn)
Bernoulli number.
Definition numeric.cpp:2170
const numeric cosh(const numeric &x)
Numeric hyperbolic cosine (trigonometric function).
Definition numeric.cpp:1562
const numeric mod(const numeric &a, const numeric &b)
Modulus (in positive representation).
Definition numeric.cpp:2332
const numeric abs(const numeric &x)
Absolute value.
Definition numeric.cpp:2319
ex EulerEvalf()
Floating point evaluation of Euler's constant gamma.
Definition numeric.cpp:2505
const numeric asin(const numeric &x)
Numeric inverse sine (trigonometric function).
Definition numeric.cpp:1487
function zeta(const T1 &p1)
Definition inifcns.h:110
ex PiEvalf()
Floating point evaluation of Archimedes' constant Pi.
Definition numeric.cpp:2498
bool is_negative(const numeric &x)
Definition numeric.h:268
const numeric fibonacci(const numeric &n)
Fibonacci number.
Definition numeric.cpp:2262
matrix inverse(const matrix &m)
Definition matrix.h:149
const numeric doublefactorial(const numeric &n)
The double factorial combinatorial function.
Definition numeric.cpp:2126
const numeric tanh(const numeric &x)
Numeric hyperbolic tangent (trigonometric function).
Definition numeric.cpp:1571
bool is_rational(const numeric &x)
Definition numeric.h:289
const numeric Li2(const numeric &x)
Definition numeric.cpp:1704
int csgn(const numeric &x)
Definition numeric.h:259
const numeric acos(const numeric &x)
Numeric inverse cosine (trigonometric function).
Definition numeric.cpp:1496
ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned options)
Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X) and b(X) in Z[X].
Definition normal.cpp:1432
function psi(const T1 &p1)
Definition inifcns.h:164
const numeric sqrt(const numeric &x)
Numeric square root.
Definition numeric.cpp:2479
bool is_crational(const numeric &x)
Definition numeric.h:298
const numeric irem(const numeric &a, const numeric &b)
Numeric integer remainder.
Definition numeric.cpp:2367
const cln::cl_N tgamma(const cln::cl_N &x)
Definition numeric.cpp:2066
const numeric sinh(const numeric &x)
Numeric hyperbolic sine (trigonometric function).
Definition numeric.cpp:1553
void(* digits_changed_callback)(long)
Function pointer to implement callbacks in the case 'Digits' gets changed.
Definition numeric.h:39
const numeric imag(const numeric &x)
Definition numeric.h:313
const numeric binomial(const numeric &n, const numeric &k)
The Binomial coefficients.
Definition numeric.cpp:2144
const numeric exp(const numeric &x)
Exponential function.
Definition numeric.cpp:1438
const numeric factorial(const numeric &n)
Factorial combinatorial function.
Definition numeric.cpp:2112
const numeric acosh(const numeric &x)
Numeric inverse hyperbolic cosine (trigonometric function).
Definition numeric.cpp:1589
const numeric cos(const numeric &x)
Numeric cosine (trigonometric function).
Definition numeric.cpp:1469
bool is_even(const numeric &x)
Definition numeric.h:280
const numeric smod(const numeric &a_, const numeric &b_)
Modulus (in symmetric representation).
Definition numeric.cpp:2345
bool is_cinteger(const numeric &x)
Definition numeric.h:295
const numeric atanh(const numeric &x)
Numeric inverse hyperbolic tangent (trigonometric function).
Definition numeric.cpp:1598
ex lcm(const ex &a, const ex &b, bool check_args)
Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X].
Definition normal.cpp:1774
const numeric iquo(const numeric &a, const numeric &b)
Numeric integer quotient.
Definition numeric.cpp:2408
bool is_pos_integer(const numeric &x)
Definition numeric.h:274
const numeric isqrt(const numeric &x)
Integer numeric square root.
Definition numeric.cpp:2486
const numeric log(const numeric &x)
Natural logarithm.
Definition numeric.cpp:1449
const numeric real(const numeric &x)
Definition numeric.h:310
_numeric_digits Digits
Accuracy in decimal digits.
Definition numeric.cpp:2590
bool is_real(const numeric &x)
Definition numeric.h:292
const numeric sin(const numeric &x)
Numeric sine (trigonometric function).
Definition numeric.cpp:1460
long to_long(const numeric &x)
Definition numeric.h:304
ex numer(const ex &thisex)
Definition ex.h:760
ex CatalanEvalf()
Floating point evaluation of Catalan's constant.
Definition numeric.cpp:2512
int to_int(const numeric &x)
Definition numeric.h:301
bool is_integer(const numeric &x)
Definition numeric.h:271
bool is_prime(const numeric &x)
Definition numeric.h:286
bool is_odd(const numeric &x)
Definition numeric.h:283
bool is_nonneg_integer(const numeric &x)
Definition numeric.h:277
const numeric asinh(const numeric &x)
Numeric inverse hyperbolic sine (trigonometric function).
Definition numeric.cpp:1580
const numeric tan(const numeric &x)
Numeric tangent (trigonometric function).
Definition numeric.cpp:1478
const cln::cl_N lgamma(const cln::cl_N &x)
The Gamma function.
Definition numeric.cpp:2038
bool is_positive(const numeric &x)
Definition numeric.h:265
numeric step(const numeric &x)
Definition numeric.h:256
double to_double(const numeric &x)
Definition numeric.h:307
#define GINAC_DECLARE_REGISTERED_CLASS(classname, supername)
Macro for inclusion in the declaration of each registered class.
Definition registrar.h:151

This page is part of the GiNaC developer's reference. It was generated automatically by doxygen. For an introduction, see the tutorial.