75 inherited::read_archive(
n, sym_lst);
76 n.find_ex(
"basis",
basis, sym_lst);
82 inherited::archive(
n);
97 c.s << openbrace <<
'(';
104 c.s <<
')' << closebrace;
147 }
else if (
exp == 2) {
151 }
else if (
exp & 1) {
183 (is_a<symbol>(
basis) || is_a<constant>(
basis))) {
217 c.s << class_name() <<
'(';
260 return inherited::info(inf);
277 const ex &mapped_basis = f(
basis);
282 return dynallocate<power>(mapped_basis, mapped_exponent);
307 return ex_to<numeric>(
exponent).to_int();
311 throw(std::runtime_error(
"power::degree(): undefined degree because of non-integer exponent"));
322 return ex_to<numeric>(
exponent).to_int();
326 throw(std::runtime_error(
"power::ldegree(): undefined degree because of non-integer exponent"));
345 int int_exp = ex_to<numeric>(
exponent).to_int();
379 const numeric *num_basis =
nullptr;
380 const numeric *num_exponent =
nullptr;
382 if (is_exactly_a<numeric>(
basis)) {
383 num_basis = &ex_to<numeric>(
basis);
385 if (is_exactly_a<numeric>(
exponent)) {
386 num_exponent = &ex_to<numeric>(
exponent);
392 throw (std::domain_error(
"power::eval(): pow(0,0) is undefined"));
403 if ((num_exponent->
real()).is_zero())
404 throw (std::domain_error(
"power::eval(): pow(0,I) is undefined"));
405 else if ((num_exponent->
real()).is_negative())
406 throw (
pole_error(
"power::eval(): division by zero",1));
416 if (is_exactly_a<function>(
basis))
423 if ( num_exponent ) {
428 const bool basis_is_crational = num_basis->
is_crational();
429 const bool exponent_is_crational = num_exponent->
is_crational();
430 if (!basis_is_crational || !exponent_is_crational) {
432 return dynallocate<numeric>(num_basis->
power(*num_exponent));
442 if (basis_is_crational && exponent_is_crational
449 if (
r.is_negative()) {
480 if (is_exactly_a<power>(
basis)) {
481 const power & sub_power = ex_to<power>(
basis);
482 const ex & sub_basis = sub_power.
basis;
484 if (is_exactly_a<numeric>(sub_exponent)) {
485 const numeric & num_sub_exponent = ex_to<numeric>(sub_exponent);
489 return dynallocate<power>(sub_basis, num_sub_exponent.
mul(*num_exponent));
503 ex_to<numeric>(ex_to<add>(
basis).seq.begin()->coeff).
div(icont);
505 const bool canonicalizable = lead_coeff.
is_integer();
507 if (canonicalizable && (! unit_normal))
510 if (canonicalizable && (icont != *
_num1_p)) {
511 const add& addref = ex_to<add>(
basis);
512 add & addp = dynallocate<add>(addref);
515 for (
auto & i : addp.
seq)
516 i.
coeff = ex_to<numeric>(i.coeff).div_dyn(icont);
520 return dynallocate<mul>(dynallocate<power>(addp, *num_exponent),
c);
522 return dynallocate<power>(addp, *num_exponent);
528 if (is_exactly_a<mul>(
basis)) {
530 const mul & mulref = ex_to<mul>(
basis);
535 mul & mulp = dynallocate<mul>(mulref);
538 return dynallocate<mul>(dynallocate<power>(mulp,
exponent),
539 dynallocate<power>(num_coeff, *num_exponent));
543 mul & mulp = dynallocate<mul>(mulref);
546 return dynallocate<mul>(dynallocate<power>(mulp,
exponent),
547 dynallocate<power>(
abs(num_coeff), *num_exponent));
557 !is_a<matrix>(
basis)) {
570 if (!is_exactly_a<numeric>(
exponent))
575 return dynallocate<power>(ebasis, eexponent);
582 if (is_a<matrix>(ebasis)) {
583 if (is_exactly_a<numeric>(eexponent)) {
584 return dynallocate<matrix>(ex_to<matrix>(ebasis).
pow(eexponent));
587 return dynallocate<power>(ebasis, eexponent);
594 if (!is_a<power>(other))
601 ex_to<numeric>(
exponent) > ex_to<numeric>(other.
op(1)) &&
606 ex_to<numeric>(
exponent) < ex_to<numeric>(other.
op(1)) &&
622 return dynallocate<power>(subsed_basis, subsed_exponent);
627 for (
auto & it :
m) {
628 int nummatches = std::numeric_limits<int>::max();
630 if (
tryfactsubs(*
this, it.first, nummatches, repls)) {
633 ex result = (*this) *
pow(anum/aden, nummatches);
634 return (ex_to<basic>(result)).subs_one_level(
m,
options);
643 return inherited::eval_ncmul(v);
655 return dynallocate<power>(
basis, newexponent);
662 return dynallocate<power>(newbasis,
exponent);
664 return conjugate_function(*this).hold();
681 long N = ex_to<numeric>(
c).to_long();
684 long NN = N > 0 ? N : -N;
687 for (
long n = 0;
n <= NN;
n += 2) {
717 long N = ex_to<numeric>(
c).to_long();
720 long p = N > 0 ? 1 : 3;
721 long NN = N > 0 ? N : -N;
724 for (
long n = 1;
n <= NN;
n += 2) {
749 return dynallocate<mul>(std::move(newseq),
exponent);
759 const power &o =
static_cast<const power &
>(other);
792 prodseq.reserve(
m.seq.size() + 1);
793 powseq.reserve(
m.seq.size() + 1);
797 for (
auto & cit :
m.seq) {
798 ex e=
m.recombine_pair_to_ex(cit);
805 powseq.push_back(cit);
821 if (prodseq.size() > 0) {
822 ex newbasis = dynallocate<mul>(std::move(powseq),
coeff);
824 return dynallocate<mul>(std::move(prodseq)) *
pow(newbasis,
exponent);
833 if (is_exactly_a<add>(expanded_exponent)) {
834 const add &a = ex_to<add>(expanded_exponent);
836 distrseq.reserve(a.
seq.size() + 1);
837 for (
auto & cit : a.
seq) {
844 long int_exponent = num_exponent.
to_int();
845 if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
846 distrseq.push_back(
expand_add(ex_to<add>(expanded_basis), int_exponent,
options));
853 ex r = dynallocate<mul>(distrseq);
857 if (!is_exactly_a<numeric>(expanded_exponent) ||
858 !ex_to<numeric>(expanded_exponent).
is_integer()) {
867 const numeric & num_exponent = ex_to<numeric>(expanded_exponent);
868 long int_exponent = num_exponent.
to_long();
871 if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
875 if (is_exactly_a<mul>(expanded_basis))
964 result.reserve(result_size);
969 for (
int k = 1;
k <=
n; ++
k) {
974 binomial_coefficient = 1;
987 const std::vector<unsigned>& partition = partitions.
get();
989 const unsigned msize = std::count_if(partition.begin(), partition.end(), [](
int i) { return i > 0; });
995 const std::vector<unsigned>&
exponent = compositions.
get();
997 monomial.reserve(msize);
999 for (
unsigned i = 0; i <
exponent.size(); ++i) {
1000 const ex &
r = a.
seq[i].rest;
1003 !is_exactly_a<numeric>(ex_to<power>(
r).
exponent) ||
1005 !is_exactly_a<add>(ex_to<power>(
r).
basis) ||
1006 !is_exactly_a<mul>(ex_to<power>(
r).
basis) ||
1007 !is_exactly_a<power>(ex_to<power>(
r).
basis));
1009 const numeric &
c = ex_to<numeric>(a.
seq[i].coeff);
1024 }
while (compositions.
next());
1025 }
while (partitions.
next());
1042 size_t result_size = (a.
nops() * (a.
nops()+1)) / 2;
1047 result.reserve(result_size);
1053 for (
auto cit0=a.
seq.begin(); cit0!=
last; ++cit0) {
1054 const ex &
r = cit0->rest;
1055 const ex &
c = cit0->coeff;
1059 !is_exactly_a<numeric>(ex_to<power>(
r).
exponent) ||
1061 !is_exactly_a<add>(ex_to<power>(
r).
basis) ||
1062 !is_exactly_a<mul>(ex_to<power>(
r).
basis) ||
1063 !is_exactly_a<power>(ex_to<power>(
r).
basis));
1065 if (
c.is_equal(
_ex1)) {
1066 if (is_exactly_a<mul>(
r)) {
1070 result.emplace_back(
expair(dynallocate<power>(
r,
_ex2),
1074 if (is_exactly_a<mul>(
r)) {
1076 ex_to<numeric>(
c).power_dyn(*
_num2_p)));
1078 result.emplace_back(
expair(dynallocate<power>(
r,
_ex2),
1079 ex_to<numeric>(
c).power_dyn(*
_num2_p)));
1083 for (
auto cit1=cit0+1; cit1!=
last; ++cit1) {
1084 const ex & r1 = cit1->rest;
1093 for (
auto & i : a.
seq)
1127 for (
int i=1; i <
n.to_int(); i++)
1133 distrseq.reserve(
m.seq.size());
1134 bool need_reexpand =
false;
1136 for (
auto & cit :
m.seq) {
1137 expair p =
m.combine_pair_with_coeff_to_pair(cit,
n);
1138 if (from_expand && is_exactly_a<add>(cit.rest) && ex_to<numeric>(p.
coeff).is_pos_integer()) {
1141 need_reexpand =
true;
1143 distrseq.push_back(p);
1146 const mul & result = dynallocate<mul>(std::move(distrseq), ex_to<numeric>(
m.overall_coeff).power_dyn(
n));
Interface to GiNaC's sums of expressions.
Archiving of GiNaC expressions.
#define GINAC_ASSERT(X)
Assertion macro for checking invariances.
ex recombine_pair_to_ex(const expair &p) const override
Form an ex out of an expair, using the corresponding semantics.
expair combine_pair_with_coeff_to_pair(const expair &p, const ex &c) const override
This class stores all properties needed to record/retrieve the state of one object of class basic (or...
This class is the ABC (abstract base class) of GiNaC's class hierarchy.
const basic & clearflag(unsigned f) const
Clear some status_flags.
const basic & setflag(unsigned f) const
Set some status_flags.
virtual bool has(const ex &other, unsigned options=0) const
Test for occurrence of a pattern.
unsigned flags
of type status_flags
ex subs_one_level(const exmap &m, unsigned options) const
Helper function for subs().
const basic & hold() const
Stop further evaluation.
bool is_equal(const basic &other) const
Test for syntactic equality.
virtual int compare_same_type(const basic &other) const
Returns order relation between two objects of same type.
Generate all compositions of a partition of an integer n, starting with the compositions which has no...
const std::vector< unsigned > & get() const
Wrapper template for making GiNaC classes out of STL containers.
Lightweight wrapper for GiNaC's symbolic objects.
numeric integer_content() const
Compute the integer content (= GCD of all numeric coefficients) of an expanded polynomial.
bool match(const ex &pattern) const
Check whether expression matches a specified pattern.
bool is_polynomial(const ex &vars) const
Check whether expression is a polynomial.
ex diff(const symbol &s, unsigned nth=1) const
Compute partial derivative of an expression.
ex expand(unsigned options=0) const
Expand an expression.
bool is_equal(const ex &other) const
int degree(const ex &s) const
bool has(const ex &pattern, unsigned options=0) const
unsigned return_type() const
return_type_t return_type_tinfo() const
ex subs(const exmap &m, unsigned options=0) const
bool info(unsigned inf) const
int compare(const ex &other) const
void print(const print_context &c, unsigned level=0) const
Print expression to stream.
int ldegree(const ex &s) const
ex coeff(const ex &s, int n=1) const
ex coeff
second member of pair, must be numeric
size_t nops() const override
Number of operands/members.
@ expand_rename_idx
used internally by mul::expand()
@ algebraic
enable algebraic matching
Non-commutative product of expressions.
This class is a wrapper around CLN-numbers within the GiNaC class hierarchy.
bool is_pos_integer() const
True if object is an exact integer greater than zero.
const numeric & mul_dyn(const numeric &other) const
Numerical multiplication method.
bool is_crational() const
True if object is an exact rational number, may even be complex (denominator may be unity).
bool is_rational() const
True if object is an exact rational number, may even be complex (denominator may be unity).
const numeric real() const
Real part of a number.
long to_long() const
Converts numeric types to machine's long.
int compare(const numeric &other) const
This method establishes a canonical order on all numbers.
bool is_positive() const
True if object is not complex and greater than zero.
bool is_real() const
True if object is a real integer, rational or float (but not complex).
const numeric numer() const
Numerator.
bool is_integer() const
True if object is a non-complex integer.
const numeric power(const numeric &other) const
Numerical exponentiation.
const numeric denom() const
Denominator.
const numeric mul(const numeric &other) const
Numerical multiplication method.
bool is_equal(const numeric &other) const
int to_int() const
Converts numeric types to machine's int.
const numeric inverse() const
Inverse of a number.
bool is_zero() const
True if object is zero.
const numeric div(const numeric &other) const
Numerical division method.
Generate all bounded combinatorial partitions of an integer n with exactly m parts (including zero pa...
const std::vector< unsigned > & get() const
Exception class thrown when a singularity is encountered.
This class holds a two-component object, a basis and and exponent representing exponentiation.
static ex expand_mul(const mul &m, const numeric &n, unsigned options, bool from_expand=false)
Expand factors of m in m^n where m is a mul and n is an integer.
void do_print_dflt(const print_dflt &c, unsigned level) const
void do_print_csrc(const print_csrc &c, unsigned level) const
static ex expand_add(const add &a, long n, unsigned options)
expand a^n where a is an add and n is a positive integer.
int degree(const ex &s) const override
Return degree of highest power in object s.
void read_archive(const archive_node &n, lst &syms) override
Read (a.k.a.
ex subs(const exmap &m, unsigned options=0) const override
Substitute a set of objects by arbitrary expressions.
int ldegree(const ex &s) const override
Return degree of lowest power in object s.
static ex expand_add_2(const add &a, unsigned options)
Special case of power::expand_add.
ex real_part() const override
void archive(archive_node &n) const override
Save (a.k.a.
ex derivative(const symbol &s) const override
Implementation of ex::diff() for a power.
ex map(map_function &f) const override
Construct new expression by applying the specified function to all sub-expressions (one level only,...
ex eval() const override
Perform automatic term rewriting rules in this class.
void do_print_python(const print_python &c, unsigned level) const
void print_power(const print_context &c, const char *powersymbol, const char *openbrace, const char *closebrace, unsigned level) const
void do_print_python_repr(const print_python_repr &c, unsigned level) const
unsigned precedence() const override
Return relative operator precedence (for parenthezing output).
ex op(size_t i) const override
Return operand/member at position i.
power(const ex &lh, const ex &rh)
void do_print_latex(const print_latex &c, unsigned level) const
ex conjugate() const override
ex coeff(const ex &s, int n=1) const override
Return coefficient of degree n in object s.
bool has(const ex &other, unsigned options=0) const override
Test for occurrence of a pattern.
ex evalm() const override
Evaluate sums, products and integer powers of matrices.
return_type_t return_type_tinfo() const override
size_t nops() const override
Number of operands/members.
ex expand(unsigned options=0) const override
Expand expression, i.e.
bool info(unsigned inf) const override
Information about the object.
ex eval_ncmul(const exvector &v) const override
void do_print_csrc_cl_N(const print_csrc_cl_N &c, unsigned level) const
unsigned return_type() const override
ex imag_part() const override
bool is_polynomial(const ex &var) const override
Check whether this is a polynomial in the given variables.
ex evalf() const override
Evaluate object numerically.
Base class for print_contexts.
Context for C source output using CLN numbers.
Base context for C source output.
Context for default (ginsh-parsable) output.
Context for latex-parsable output.
Context for python-parsable output.
Context for python pretty-print output.
@ expanded
.expand(0) has already done its job (other expand() options ignore this flag)
@ evaluated
.eval() has already done its job
@ hash_calculated
.calchash() has already done its job
@ no_pattern
disable pattern matching
@ algebraic
enable algebraic substitutions
Definition of optimizing macros.
Interface to GiNaC's constant types and some special constants.
Interface to sequences of expression pairs.
Interface to GiNaC's indexed expressions.
Interface to GiNaC's initially known functions.
Definition of GiNaC's lst.
Interface to symbolic matrices.
Interface to GiNaC's products of expressions.
const numeric pow(const numeric &x, const numeric &y)
std::map< ex, ex, ex_is_less > exmap
std::vector< expair > epvector
expair-vector
const numeric abs(const numeric &x)
Absolute value.
bool is_negative(const numeric &x)
bool are_ex_trivially_equal(const ex &e1, const ex &e2)
Compare two objects of class quickly without doing a deep tree traversal.
const numeric binomial(const numeric &n, const numeric &k)
The Binomial coefficients.
print_func< print_dflt >(&diracone::do_print). print_func< print_latex >(&diracone
const numeric exp(const numeric &x)
Exponential function.
const numeric cos(const numeric &x)
Numeric cosine (trigonometric function).
GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(add, expairseq, print_func< print_context >(&add::do_print). print_func< print_latex >(&add::do_print_latex). print_func< print_csrc >(&add::do_print_csrc). print_func< print_tree >(&add::do_print_tree). print_func< print_python_repr >(&add::do_print_python_repr)) add
const numeric iquo(const numeric &a, const numeric &b)
Numeric integer quotient.
bool is_pos_integer(const numeric &x)
const numeric log(const numeric &x)
Natural logarithm.
const numeric sin(const numeric &x)
Numeric sine (trigonometric function).
ex numer(const ex &thisex)
ex factor(const ex &poly, unsigned options)
Interface function to the outside world.
bool is_integer(const numeric &x)
static void print_sym_pow(const print_context &c, const symbol &x, int exp)
lst rename_dummy_indices_uniquely(const exvector &va, const exvector &vb)
Similar to above, where va and vb are the same and the return value is a list of two lists for substi...
GINAC_IMPLEMENT_REGISTERED_CLASS_OPT_T(lst, basic, print_func< print_context >(&lst::do_print). print_func< print_tree >(&lst::do_print_tree)) template<> bool lst GINAC_BIND_UNARCHIVER(lst)
Specialization of container::info() for lst.
bool tryfactsubs(const ex &origfactor, const ex &patternfactor, int &nummatches, exmap &repls)
std::vector< ex > exvector
exvector get_all_dummy_indices(const ex &e)
Returns all dummy indices from the exvector.
const numeric multinomial_coefficient(const std::vector< unsigned > &p)
Compute the multinomial coefficient n!/(p1!*p2!*...*pk!) where n = p1+p2+...+pk, i....
Interface to GiNaC's non-commutative products of expressions.
Makes the interface to the underlying bignum package available.
Interface to GiNaC's overloaded operators.
Interface to GiNaC's symbolic exponentiation (basis^exponent).
Interface to relations between expressions.
Function object for map().
To distinguish between different kinds of non-commutative objects.
Interface to GiNaC's symbolic objects.
Interface to several small and furry utilities needed within GiNaC but not of any interest to the use...