GiNaC 1.8.7
clifford.cpp
Go to the documentation of this file.
1
5/*
6 * GiNaC Copyright (C) 1999-2023 Johannes Gutenberg University Mainz, Germany
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23#include "clifford.h"
24
25#include "ex.h"
26#include "idx.h"
27#include "ncmul.h"
28#include "symbol.h"
29#include "numeric.h" // for I
30#include "symmetry.h"
31#include "lst.h"
32#include "relational.h"
33#include "operators.h"
34#include "add.h"
35#include "mul.h"
36#include "power.h"
37#include "matrix.h"
38#include "archive.h"
39#include "utils.h"
40
41#include <stdexcept>
42
43namespace GiNaC {
44
47 print_func<print_latex>(&clifford::do_print_latex).
48 print_func<print_tree>(&clifford::do_print_tree))
49
51 print_func<print_dflt>(&diracone::do_print).
52 print_func<print_latex>(&diracone::do_print_latex))
53
55 print_func<print_dflt>(&cliffordunit::do_print).
56 print_func<print_latex>(&cliffordunit::do_print_latex))
57
59 print_func<print_dflt>(&diracgamma::do_print).
60 print_func<print_latex>(&diracgamma::do_print_latex))
61
63 print_func<print_dflt>(&diracgamma5::do_print).
64 print_func<print_latex>(&diracgamma5::do_print_latex))
65
67 print_func<print_context>(&diracgammaL::do_print).
68 print_func<print_latex>(&diracgammaL::do_print_latex))
69
71 print_func<print_context>(&diracgammaR::do_print).
72 print_func<print_latex>(&diracgammaR::do_print_latex))
73
75// default constructors
77
78clifford::clifford() : representation_label(0), metric(0), commutator_sign(-1)
79{
80}
81
82DEFAULT_CTOR(diracone)
83DEFAULT_CTOR(cliffordunit)
84DEFAULT_CTOR(diracgamma)
85DEFAULT_CTOR(diracgamma5)
86DEFAULT_CTOR(diracgammaL)
87DEFAULT_CTOR(diracgammaR)
88
89
90// other constructors
92
96clifford::clifford(const ex & b, unsigned char rl) : inherited(b), representation_label(rl), metric(0), commutator_sign(-1)
97{
98}
99
104clifford::clifford(const ex & b, const ex & mu, const ex & metr, unsigned char rl, int comm_sign) : inherited(b, mu), representation_label(rl), metric(metr), commutator_sign(comm_sign)
105{
106 GINAC_ASSERT(is_a<idx>(mu));
107}
108
109clifford::clifford(unsigned char rl, const ex & metr, int comm_sign, const exvector & v) : inherited(not_symmetric(), v), representation_label(rl), metric(metr), commutator_sign(comm_sign)
110{
111}
112
113clifford::clifford(unsigned char rl, const ex & metr, int comm_sign, exvector && v) : inherited(not_symmetric(), std::move(v)), representation_label(rl), metric(metr), commutator_sign(comm_sign)
114{
115}
116
118{
119 return make_return_type_t<clifford>(representation_label);
120}
121
123// archiving
125
127{
128 inherited::read_archive(n, sym_lst);
129 unsigned rl;
130 n.find_unsigned("label", rl);
132 n.find_ex("metric", metric, sym_lst);
133 n.find_unsigned("commutator_sign+1", rl);
134 commutator_sign = rl - 1;
135}
136
138{
139 inherited::archive(n);
140 n.add_unsigned("label", representation_label);
141 n.add_ex("metric", metric);
142 n.add_unsigned("commutator_sign+1", commutator_sign+1);
143}
144
152
153
154ex clifford::get_metric(const ex & i, const ex & j, bool symmetrised) const
155{
156 if (is_a<indexed>(metric)) {
157 if (symmetrised && !(ex_to<symmetry>(ex_to<indexed>(metric).get_symmetry()).has_symmetry())) {
158 if (is_a<matrix>(metric.op(0))) {
159 return indexed((ex_to<matrix>(metric.op(0)).add(ex_to<matrix>(metric.op(0)).transpose())).mul(numeric(1, 2)),
160 symmetric2(), i, j);
161 } else {
162 return simplify_indexed(indexed(metric.op(0)*_ex1_2, i, j) + indexed(metric.op(0)*_ex1_2, j, i));
163 }
164 } else {
165 return metric.subs(lst{metric.op(1) == i, metric.op(2) == j}, subs_options::no_pattern);
166 }
167 } else {
168 exvector indices = metric.get_free_indices();
169 if (symmetrised)
170 return _ex1_2*simplify_indexed(metric.subs(lst{indices[0] == i, indices[1] == j}, subs_options::no_pattern)
171 + metric.subs(lst{indices[0] == j, indices[1] == i}, subs_options::no_pattern));
172 else
173 return metric.subs(lst{indices[0] == i, indices[1] == j}, subs_options::no_pattern);
174 }
175}
176
177bool clifford::same_metric(const ex & other) const
178{
179 ex metr;
180 if (is_a<clifford>(other))
181 metr = ex_to<clifford>(other).get_metric();
182 else
183 metr = other;
184
185 if (is_a<indexed>(metr))
186 return metr.op(0).is_equal(get_metric().op(0));
187 else {
188 exvector indices = metr.get_free_indices();
189 return (indices.size() == 2)
190 && simplify_indexed(get_metric(indices[0], indices[1])-metr).is_zero();
191 }
192}
193
195// functions overriding virtual functions from base classes
197
198ex clifford::op(size_t i) const
199{
200 GINAC_ASSERT(i<nops());
201 if (nops()-i == 1)
203 else
204 return inherited::op(i);
205}
206
208{
209 GINAC_ASSERT(i<nops());
210
211 static ex rl = numeric(representation_label);
213 if (nops()-i == 1)
214 return rl;
215 else
216 return inherited::let_op(i);
217}
218
219ex clifford::subs(const exmap & m, unsigned options) const
220{
221 ex subsed = inherited::subs(m, options);
222 if(is_a<clifford>(subsed)) {
223 ex prevmetric = ex_to<clifford>(subsed).metric;
224 ex newmetric = prevmetric.subs(m, options);
225 if(!are_ex_trivially_equal(prevmetric, newmetric)) {
226 clifford c = ex_to<clifford>(subsed);
227 c.metric = newmetric;
228 subsed = c;
229 }
230 }
231 return subsed;
232}
233
234int clifford::compare_same_type(const basic & other) const
235{
236 GINAC_ASSERT(is_a<clifford>(other));
237 const clifford &o = static_cast<const clifford &>(other);
238
240 // different representation label
241 return representation_label < o.representation_label ? -1 : 1;
242 }
243
244 return inherited::compare_same_type(other);
245}
246
247bool clifford::match_same_type(const basic & other) const
248{
249 GINAC_ASSERT(is_a<clifford>(other));
250 const clifford &o = static_cast<const clifford &>(other);
251
253}
254
255static bool is_dirac_slash(const ex & seq0)
256{
257 return !is_a<diracgamma5>(seq0) && !is_a<diracgammaL>(seq0) &&
258 !is_a<diracgammaR>(seq0) && !is_a<cliffordunit>(seq0) &&
259 !is_a<diracone>(seq0);
260}
261
262void clifford::do_print_dflt(const print_dflt & c, unsigned level) const
263{
264 // dirac_slash() object is printed differently
265 if (is_dirac_slash(seq[0])) {
266 seq[0].print(c, precedence());
267 c.s << "\\";
268 } else { // We do not print representation label if it is 0
269 if (representation_label == 0) {
270 this->print_dispatch<inherited>(c, level);
271 } else { // otherwise we put it before indices in square brackets; the code is borrowed from indexed.cpp
272 if (precedence() <= level) {
273 c.s << '(';
274 }
275 seq[0].print(c, precedence());
276 c.s << '[' << int(representation_label) << ']';
277 printindices(c, level);
278 if (precedence() <= level) {
279 c.s << ')';
280 }
281 }
282 }
283}
284
285void clifford::do_print_latex(const print_latex & c, unsigned level) const
286{
287 // dirac_slash() object is printed differently
288 if (is_dirac_slash(seq[0])) {
289 c.s << "{";
290 seq[0].print(c, precedence());
291 c.s << "\\hspace{-1.0ex}/}";
292 } else {
293 c.s << "\\clifford[" << int(representation_label) << "]";
294 this->print_dispatch<inherited>(c, level);
295 }
296}
297
298void clifford::do_print_tree(const print_tree & c, unsigned level) const
299{
300 c.s << std::string(level, ' ') << class_name() << " @" << this
301 << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
302 << ", " << seq.size()-1 << " indices"
303 << ", symmetry=" << symtree << std::endl;
304 metric.print(c, level + c.delta_indent);
305 seq[0].print(c, level + c.delta_indent);
306 printindices(c, level + c.delta_indent);
307}
308
315
316DEFAULT_PRINT_LATEX(diracone, "ONE", "\\mathbf{1}")
318DEFAULT_PRINT_LATEX(diracgamma, "gamma", "\\gamma")
319DEFAULT_PRINT_LATEX(diracgamma5, "gamma5", "{\\gamma^5}")
320DEFAULT_PRINT_LATEX(diracgammaL, "gammaL", "{\\gamma_L}")
321DEFAULT_PRINT_LATEX(diracgammaR, "gammaR", "{\\gamma_R}")
322
324static void base_and_index(const ex & c, ex & b, ex & i)
325{
326 GINAC_ASSERT(is_a<clifford>(c));
327 GINAC_ASSERT(c.nops() == 2+1);
328
329 if (is_a<cliffordunit>(c.op(0))) { // proper dirac gamma object or clifford unit
330 i = c.op(1);
331 b = _ex1;
332 } else if (is_a<diracgamma5>(c.op(0)) || is_a<diracgammaL>(c.op(0)) || is_a<diracgammaR>(c.op(0))) { // gamma5/L/R
333 i = _ex0;
334 b = _ex1;
335 } else { // slash object, generate new dummy index
336 varidx ix(dynallocate<symbol>(), ex_to<idx>(c.op(1)).get_dim());
337 b = indexed(c.op(0), ix.toggle_variance());
338 i = ix;
339 }
340}
341
343struct is_not_a_clifford {
344 bool operator()(const ex & e)
345 {
346 return !is_a<clifford>(e);
347 }
348};
349
351bool diracgamma::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
352{
353 GINAC_ASSERT(is_a<clifford>(*self));
354 GINAC_ASSERT(is_a<indexed>(*other));
355 GINAC_ASSERT(is_a<diracgamma>(self->op(0)));
356 unsigned char rl = ex_to<clifford>(*self).get_representation_label();
357
358 ex dim = ex_to<idx>(self->op(1)).get_dim();
359 if (other->nops() > 1)
360 dim = minimal_dim(dim, ex_to<idx>(other->op(1)).get_dim());
361
362 if (is_a<clifford>(*other)) {
363
364 // Contraction only makes sense if the representation labels are equal
365 if (ex_to<clifford>(*other).get_representation_label() != rl)
366 return false;
367
368 size_t num = other - self;
369
370 // gamma~mu gamma.mu = dim ONE
371 if (num == 1) {
372 *self = dim;
373 *other = dirac_ONE(rl);
374 return true;
375
376 // gamma~mu gamma~alpha gamma.mu = (2-dim) gamma~alpha
377 } else if (num == 2
378 && is_a<clifford>(self[1])) {
379 *self = 2 - dim;
380 *other = _ex1;
381 return true;
382
383 // gamma~mu gamma~alpha gamma~beta gamma.mu = 4 g~alpha~beta + (dim-4) gamam~alpha gamma~beta
384 } else if (num == 3
385 && is_a<clifford>(self[1])
386 && is_a<clifford>(self[2])) {
387 ex b1, i1, b2, i2;
388 base_and_index(self[1], b1, i1);
389 base_and_index(self[2], b2, i2);
390 *self = 4 * lorentz_g(i1, i2) * b1 * b2 * dirac_ONE(rl) + (dim - 4) * self[1] * self[2];
391 self[1] = _ex1;
392 self[2] = _ex1;
393 *other = _ex1;
394 return true;
395
396 // gamma~mu gamma~alpha gamma~beta gamma~delta gamma.mu = -2 gamma~delta gamma~beta gamma~alpha - (dim-4) gamam~alpha gamma~beta gamma~delta
397 } else if (num == 4
398 && is_a<clifford>(self[1])
399 && is_a<clifford>(self[2])
400 && is_a<clifford>(self[3])) {
401 *self = -2 * self[3] * self[2] * self[1] - (dim - 4) * self[1] * self[2] * self[3];
402 self[1] = _ex1;
403 self[2] = _ex1;
404 self[3] = _ex1;
405 *other = _ex1;
406 return true;
407
408 // gamma~mu Sodd gamma.mu = -2 Sodd_R
409 // (Chisholm identity in 4 dimensions)
410 } else if (!((other - self) & 1) && dim.is_equal(4)) {
411 if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
412 return false;
413
414 *self = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(other), std::reverse_iterator<exvector::const_iterator>(self + 1)));
415 std::fill(self + 1, other, _ex1);
416 *other = _ex_2;
417 return true;
418
419 // gamma~mu Sodd gamma~alpha gamma.mu = 2 gamma~alpha Sodd + 2 Sodd_R gamma~alpha
420 // (commutate contracted indices towards each other, then use
421 // Chisholm identity in 4 dimensions)
422 } else if (((other - self) & 1) && dim.is_equal(4)) {
423 if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
424 return false;
425
426 auto next_to_last = other - 1;
427 ex S = ncmul(exvector(self + 1, next_to_last));
428 ex SR = ncmul(exvector(std::reverse_iterator<exvector::const_iterator>(next_to_last), std::reverse_iterator<exvector::const_iterator>(self + 1)));
429
430 *self = (*next_to_last) * S + SR * (*next_to_last);
431 std::fill(self + 1, other, _ex1);
432 *other = _ex2;
433 return true;
434
435 // gamma~mu S gamma~alpha gamma.mu = 2 gamma~alpha S - gamma~mu S gamma.mu gamma~alpha
436 // (commutate contracted indices towards each other, simplify_indexed()
437 // will re-expand and re-run the simplification)
438 } else {
439 if (std::find_if(self + 1, other, is_not_a_clifford()) != other)
440 return false;
441
442 auto next_to_last = other - 1;
443 ex S = ncmul(exvector(self + 1, next_to_last));
444
445 *self = 2 * (*next_to_last) * S - (*self) * S * (*other) * (*next_to_last);
446 std::fill(self + 1, other + 1, _ex1);
447 return true;
448 }
449
450 } else if (is_a<symbol>(other->op(0)) && other->nops() == 2) {
451
452 // x.mu gamma~mu -> x-slash
453 *self = dirac_slash(other->op(0), dim, rl);
454 *other = _ex1;
455 return true;
456 }
457
458 return false;
459}
460
462bool cliffordunit::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
463{
464 GINAC_ASSERT(is_a<clifford>(*self));
465 GINAC_ASSERT(is_a<indexed>(*other));
466 GINAC_ASSERT(is_a<cliffordunit>(self->op(0)));
467 clifford unit = ex_to<clifford>(*self);
468 unsigned char rl = unit.get_representation_label();
469
470 if (is_a<clifford>(*other)) {
471 // Contraction only makes sense if the representation labels are equal
472 // and the metrics are the same
473 if ((ex_to<clifford>(*other).get_representation_label() != rl)
474 && unit.same_metric(*other))
475 return false;
476
477 auto before_other = other - 1;
478 ex mu = self->op(1);
479 ex mu_toggle = other->op(1);
480 ex alpha = before_other->op(1);
481
482 // e~mu e.mu = Tr ONE
483 if (other - self == 1) {
484 *self = unit.get_metric(mu, mu_toggle, true);
485 *other = dirac_ONE(rl);
486 return true;
487
488 } else if (other - self == 2) {
489 if (is_a<clifford>(*before_other) && ex_to<clifford>(*before_other).get_representation_label() == rl) {
490 // e~mu e~alpha e.mu = 2*e~mu B(alpha, mu.toggle_variance())-Tr(B) e~alpha
491 *self = 2 * (*self) * unit.get_metric(alpha, mu_toggle, true) - unit.get_metric(mu, mu_toggle, true) * (*before_other);
492 *before_other = _ex1;
493 *other = _ex1;
494 return true;
495
496 } else {
497 // e~mu S e.mu = Tr S ONE
498 *self = unit.get_metric(mu, mu_toggle, true);
499 *other = dirac_ONE(rl);
500 return true;
501 }
502 } else {
503 // e~mu S e~alpha e.mu = 2 e~mu S B(alpha, mu.toggle_variance()) - e~mu S e.mu e~alpha
504 // (commutate contracted indices towards each other, simplify_indexed()
505 // will re-expand and re-run the simplification)
506 if (std::find_if(self + 1, other, is_not_a_clifford()) != other) {
507 return false;
508 }
509
510 ex S = ncmul(exvector(self + 1, before_other));
511
512 if (is_a<clifford>(*before_other) && ex_to<clifford>(*before_other).get_representation_label() == rl) {
513 *self = 2 * (*self) * S * unit.get_metric(alpha, mu_toggle, true) - (*self) * S * (*other) * (*before_other);
514 } else {
515 // simply commutes
516 *self = (*self) * S * (*other) * (*before_other);
517 }
518
519 std::fill(self + 1, other + 1, _ex1);
520 return true;
521 }
522 }
523 return false;
524}
525
529ex clifford::eval_ncmul(const exvector & v) const
530{
531 exvector s;
532 s.reserve(v.size());
533
534 // Remove superfluous ONEs
535 for (auto & it : v) {
536 if (!is_a<clifford>(it) || !is_a<diracone>(it.op(0)))
537 s.push_back(it);
538 }
539
540 bool something_changed = false;
541 int sign = 1;
542
543 // Anticommutate gamma5/L/R's to the front
544 if (s.size() >= 2) {
545 auto first = s.begin(), next_to_last = s.end() - 2;
546 while (true) {
547 auto it = next_to_last;
548 while (true) {
549 auto it2 = it + 1;
550 if (is_a<clifford>(*it) && is_a<clifford>(*it2)) {
551 ex e1 = it->op(0), e2 = it2->op(0);
552
553 if (is_a<diracgamma5>(e2)) {
554
555 if (is_a<diracgammaL>(e1) || is_a<diracgammaR>(e1)) {
556
557 // gammaL/R gamma5 -> gamma5 gammaL/R
558 it->swap(*it2);
559 something_changed = true;
560
561 } else if (!is_a<diracgamma5>(e1)) {
562
563 // gamma5 gamma5 -> gamma5 gamma5 (do nothing)
564 // x gamma5 -> -gamma5 x
565 it->swap(*it2);
566 sign = -sign;
567 something_changed = true;
568 }
569
570 } else if (is_a<diracgammaL>(e2)) {
571
572 if (is_a<diracgammaR>(e1)) {
573
574 // gammaR gammaL -> 0
575 return _ex0;
576
577 } else if (!is_a<diracgammaL>(e1) && !is_a<diracgamma5>(e1)) {
578
579 // gammaL gammaL -> gammaL gammaL (do nothing)
580 // gamma5 gammaL -> gamma5 gammaL (do nothing)
581 // x gammaL -> gammaR x
582 it->swap(*it2);
583 *it = clifford(diracgammaR(), ex_to<clifford>(*it).get_representation_label());
584 something_changed = true;
585 }
586
587 } else if (is_a<diracgammaR>(e2)) {
588
589 if (is_a<diracgammaL>(e1)) {
590
591 // gammaL gammaR -> 0
592 return _ex0;
593
594 } else if (!is_a<diracgammaR>(e1) && !is_a<diracgamma5>(e1)) {
595
596 // gammaR gammaR -> gammaR gammaR (do nothing)
597 // gamma5 gammaR -> gamma5 gammaR (do nothing)
598 // x gammaR -> gammaL x
599 it->swap(*it2);
600 *it = clifford(diracgammaL(), ex_to<clifford>(*it).get_representation_label());
601 something_changed = true;
602 }
603 }
604 }
605 if (it == first)
606 break;
607 --it;
608 }
609 if (next_to_last == first)
610 break;
611 --next_to_last;
612 }
613 }
614
615 // Remove equal adjacent gammas
616 if (s.size() >= 2) {
617 exvector::iterator it, itend = s.end() - 1;
618 for (it = s.begin(); it != itend; ++it) {
619 ex & a = it[0];
620 ex & b = it[1];
621 if (!is_a<clifford>(a) || !is_a<clifford>(b))
622 continue;
623
624 const ex & ag = a.op(0);
625 const ex & bg = b.op(0);
626 bool a_is_cliffordunit = is_a<cliffordunit>(ag);
627 bool b_is_cliffordunit = is_a<cliffordunit>(bg);
628
629 if (a_is_cliffordunit && b_is_cliffordunit && ex_to<clifford>(a).same_metric(b)
630 && (ex_to<clifford>(a).get_commutator_sign() == -1)) {
631 // This is done only for Clifford algebras
632
633 const ex & ia = a.op(1);
634 const ex & ib = b.op(1);
635 if (ia.is_equal(ib)) { // gamma~alpha gamma~alpha -> g~alpha~alpha
636 a = ex_to<clifford>(a).get_metric(ia, ib, true);
637 b = dirac_ONE(representation_label);
638 something_changed = true;
639 }
640
641 } else if ((is_a<diracgamma5>(ag) && is_a<diracgamma5>(bg))) {
642
643 // Remove squares of gamma5
644 a = dirac_ONE(representation_label);
645 b = dirac_ONE(representation_label);
646 something_changed = true;
647
648 } else if ((is_a<diracgammaL>(ag) && is_a<diracgammaL>(bg))
649 || (is_a<diracgammaR>(ag) && is_a<diracgammaR>(bg))) {
650
651 // Remove squares of gammaL/R
652 b = dirac_ONE(representation_label);
653 something_changed = true;
654
655 } else if (is_a<diracgammaL>(ag) && is_a<diracgammaR>(bg)) {
656
657 // gammaL and gammaR are orthogonal
658 return _ex0;
659
660 } else if (is_a<diracgamma5>(ag) && is_a<diracgammaL>(bg)) {
661
662 // gamma5 gammaL -> -gammaL
663 a = dirac_ONE(representation_label);
664 sign = -sign;
665 something_changed = true;
666
667 } else if (is_a<diracgamma5>(ag) && is_a<diracgammaR>(bg)) {
668
669 // gamma5 gammaR -> gammaR
670 a = dirac_ONE(representation_label);
671 something_changed = true;
672
673 } else if (!a_is_cliffordunit && !b_is_cliffordunit && ag.is_equal(bg)) {
674
675 // a\ a\ -> a^2
676 varidx ix(dynallocate<symbol>(), ex_to<idx>(a.op(1)).minimal_dim(ex_to<idx>(b.op(1))));
677
678 a = indexed(ag, ix) * indexed(ag, ix.toggle_variance());
679 b = dirac_ONE(representation_label);
680 something_changed = true;
681 }
682 }
683 }
684
685 if (s.empty())
686 return dirac_ONE(representation_label) * sign;
687 if (something_changed)
688 return reeval_ncmul(s) * sign;
689 else
690 return hold_ncmul(s) * sign;
691}
692
693ex clifford::thiscontainer(const exvector & v) const
694{
695 return clifford(representation_label, metric, commutator_sign, v);
696}
697
698ex clifford::thiscontainer(exvector && v) const
699{
700 return clifford(representation_label, metric, commutator_sign, std::move(v));
701}
702
703ex diracgamma5::conjugate() const
704{
705 return _ex_1 * (*this);
706}
707
708ex diracgammaL::conjugate() const
709{
710 return dynallocate<diracgammaR>();
711}
712
713ex diracgammaR::conjugate() const
714{
715 return dynallocate<diracgammaL>();
716}
717
719// global functions
721
722ex dirac_ONE(unsigned char rl)
723{
724 static ex ONE = dynallocate<diracone>();
725 return clifford(ONE, rl);
726}
727
728static unsigned get_dim_uint(const ex& e)
729{
730 if (!is_a<idx>(e))
731 throw std::invalid_argument("get_dim_uint: argument is not an index");
732 ex dim = ex_to<idx>(e).get_dim();
733 if (!dim.info(info_flags::posint))
734 throw std::invalid_argument("get_dim_uint: dimension of index should be a positive integer");
735 unsigned d = ex_to<numeric>(dim).to_int();
736 return d;
737}
738
739ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl)
740{
741 ex unit = dynallocate<cliffordunit>();
742
743 if (!is_a<idx>(mu))
744 throw(std::invalid_argument("clifford_unit(): index of Clifford unit must be of type idx or varidx"));
745
746 exvector indices = metr.get_free_indices();
747
748 if (indices.size() == 2) {
749 return clifford(unit, mu, metr, rl);
750 } else if (is_a<matrix>(metr)) {
751 matrix M = ex_to<matrix>(metr);
752 unsigned n = M.rows();
753 bool symmetric = true;
754
755 //static idx xi(dynallocate<symbol>(), n),
756 // chi(dynallocate<symbol>(), n);
757 idx xi(dynallocate<symbol>(), n),
758 chi(dynallocate<symbol>(), n);
759 if ((n == M.cols()) && (n == get_dim_uint(mu))) {
760 for (unsigned i = 0; i < n; i++) {
761 for (unsigned j = i+1; j < n; j++) {
762 if (!M(i, j).is_equal(M(j, i))) {
763 symmetric = false;
764 }
765 }
766 }
767 return clifford(unit, mu, indexed(metr, symmetric?symmetric2():not_symmetric(), xi, chi), rl);
768 } else {
769 throw(std::invalid_argument("clifford_unit(): metric for Clifford unit must be a square matrix with the same dimensions as index"));
770 }
771 } else if (indices.size() == 0) { // a tensor or other expression without indices
772 //static varidx xi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim()),
773 // chi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim());
774 varidx xi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim()),
775 chi(dynallocate<symbol>(), ex_to<idx>(mu).get_dim());
776 return clifford(unit, mu, indexed(metr, xi, chi), rl);
777 } else
778 throw(std::invalid_argument("clifford_unit(): metric for Clifford unit must be of type tensor, matrix or an expression with two free indices"));
779}
780
781ex dirac_gamma(const ex & mu, unsigned char rl)
782{
783 static ex gamma = dynallocate<diracgamma>();
784
785 if (!is_a<varidx>(mu))
786 throw(std::invalid_argument("dirac_gamma(): index of Dirac gamma must be of type varidx"));
787
788 static varidx xi(dynallocate<symbol>(), ex_to<varidx>(mu).get_dim()),
789 chi(dynallocate<symbol>(), ex_to<varidx>(mu).get_dim());
790 return clifford(gamma, mu, indexed(dynallocate<minkmetric>(), symmetric2(), xi, chi), rl);
791}
792
793ex dirac_gamma5(unsigned char rl)
794{
795 static ex gamma5 = dynallocate<diracgamma5>();
796 return clifford(gamma5, rl);
797}
798
799ex dirac_gammaL(unsigned char rl)
800{
801 static ex gammaL = dynallocate<diracgammaL>();
802 return clifford(gammaL, rl);
803}
804
805ex dirac_gammaR(unsigned char rl)
806{
807 static ex gammaR = dynallocate<diracgammaR>();
808 return clifford(gammaR, rl);
809}
810
811ex dirac_slash(const ex & e, const ex & dim, unsigned char rl)
812{
813 // Slashed vectors are actually stored as a clifford object with the
814 // vector as its base expression and a (dummy) index that just serves
815 // for storing the space dimensionality
816
817 static varidx xi(dynallocate<symbol>(), dim),
818 chi(dynallocate<symbol>(), dim);
819 return clifford(e, varidx(0, dim), indexed(dynallocate<minkmetric>(), symmetric2(), xi, chi), rl);
820}
821
824static unsigned char get_representation_label(const return_type_t& ti)
825{
826 return (unsigned char)ti.rl;
827}
828
831static ex trace_string(exvector::const_iterator ix, size_t num)
832{
833 // Tr gamma.mu gamma.nu = 4 g.mu.nu
834 if (num == 2)
835 return lorentz_g(ix[0], ix[1]);
836
837 // Tr gamma.mu gamma.nu gamma.rho gamma.sig = 4 (g.mu.nu g.rho.sig + g.nu.rho g.mu.sig - g.mu.rho g.nu.sig )
838 else if (num == 4)
839 return lorentz_g(ix[0], ix[1]) * lorentz_g(ix[2], ix[3])
840 + lorentz_g(ix[1], ix[2]) * lorentz_g(ix[0], ix[3])
841 - lorentz_g(ix[0], ix[2]) * lorentz_g(ix[1], ix[3]);
842
843 // Traces of 6 or more gammas are computed recursively:
844 // Tr gamma.mu1 gamma.mu2 ... gamma.mun =
845 // + g.mu1.mu2 * Tr gamma.mu3 ... gamma.mun
846 // - g.mu1.mu3 * Tr gamma.mu2 gamma.mu4 ... gamma.mun
847 // + g.mu1.mu4 * Tr gamma.mu3 gamma.mu3 gamma.mu5 ... gamma.mun
848 // - ...
849 // + g.mu1.mun * Tr gamma.mu2 ... gamma.mu(n-1)
850 exvector v(num - 2);
851 int sign = 1;
852 ex result;
853 for (size_t i=1; i<num; i++) {
854 for (size_t n=1, j=0; n<num; n++) {
855 if (n == i)
856 continue;
857 v[j++] = ix[n];
858 }
859 result += sign * lorentz_g(ix[0], ix[i]) * trace_string(v.begin(), num-2);
860 sign = -sign;
861 }
862 return result;
863}
864
865ex dirac_trace(const ex & e, const std::set<unsigned char> & rls, const ex & trONE)
866{
867 if (is_a<clifford>(e)) {
868
869 unsigned char rl = ex_to<clifford>(e).get_representation_label();
870
871 // Are we taking the trace over this object's representation label?
872 if (rls.find(rl) == rls.end())
873 return e;
874
875 // Yes, all elements are traceless, except for dirac_ONE and dirac_L/R
876 const ex & g = e.op(0);
877 if (is_a<diracone>(g))
878 return trONE;
879 else if (is_a<diracgammaL>(g) || is_a<diracgammaR>(g))
880 return trONE/2;
881 else
882 return _ex0;
883
884 } else if (is_exactly_a<mul>(e)) {
885
886 // Trace of product: pull out non-clifford factors
887 ex prod = _ex1;
888 for (size_t i=0; i<e.nops(); i++) {
889 const ex &o = e.op(i);
890 if (is_clifford_tinfo(o.return_type_tinfo()))
891 prod *= dirac_trace(o, rls, trONE);
892 else
893 prod *= o;
894 }
895 return prod;
896
897 } else if (is_exactly_a<ncmul>(e)) {
898
899 unsigned char rl = get_representation_label(e.return_type_tinfo());
900
901 // Are we taking the trace over this string's representation label?
902 if (rls.find(rl) == rls.end())
903 return e;
904
905 // Substitute gammaL/R and expand product, if necessary
906 ex e_expanded = e.subs(lst{
907 dirac_gammaL(rl) == (dirac_ONE(rl)-dirac_gamma5(rl))/2,
908 dirac_gammaR(rl) == (dirac_ONE(rl)+dirac_gamma5(rl))/2
909 }, subs_options::no_pattern).expand();
910 if (!is_a<ncmul>(e_expanded))
911 return dirac_trace(e_expanded, rls, trONE);
912
913 // gamma5 gets moved to the front so this check is enough
914 bool has_gamma5 = is_a<diracgamma5>(e.op(0).op(0));
915 size_t num = e.nops();
916
917 if (has_gamma5) {
918
919 // Trace of gamma5 * odd number of gammas and trace of
920 // gamma5 * gamma.mu * gamma.nu are zero
921 if ((num & 1) == 0 || num == 3)
922 return _ex0;
923
924 // Tr gamma5 gamma.mu gamma.nu gamma.rho gamma.sigma = 4I * epsilon(mu, nu, rho, sigma)
925 // (the epsilon is always 4-dimensional)
926 if (num == 5) {
927 ex b1, i1, b2, i2, b3, i3, b4, i4;
928 base_and_index(e.op(1), b1, i1);
929 base_and_index(e.op(2), b2, i2);
930 base_and_index(e.op(3), b3, i3);
931 base_and_index(e.op(4), b4, i4);
932 return trONE * I * (lorentz_eps(ex_to<idx>(i1).replace_dim(_ex4), ex_to<idx>(i2).replace_dim(_ex4), ex_to<idx>(i3).replace_dim(_ex4), ex_to<idx>(i4).replace_dim(_ex4)) * b1 * b2 * b3 * b4).simplify_indexed();
933 }
934
935 // Tr gamma5 S_2k =
936 // I/4! * epsilon0123.mu1.mu2.mu3.mu4 * Tr gamma.mu1 gamma.mu2 gamma.mu3 gamma.mu4 S_2k
937 // (the epsilon is always 4-dimensional)
938 exvector ix(num-1), bv(num-1);
939 for (size_t i=1; i<num; i++)
940 base_and_index(e.op(i), bv[i-1], ix[i-1]);
941 num--;
942 int *iv = new int[num];
943 ex result;
944 for (size_t i=0; i<num-3; i++) {
945 ex idx1 = ix[i];
946 for (size_t j=i+1; j<num-2; j++) {
947 ex idx2 = ix[j];
948 for (size_t k=j+1; k<num-1; k++) {
949 ex idx3 = ix[k];
950 for (size_t l=k+1; l<num; l++) {
951 ex idx4 = ix[l];
952 iv[0] = i; iv[1] = j; iv[2] = k; iv[3] = l;
953 exvector v;
954 v.reserve(num - 4);
955 for (size_t n=0, t=4; n<num; n++) {
956 if (n == i || n == j || n == k || n == l)
957 continue;
958 iv[t++] = n;
959 v.push_back(ix[n]);
960 }
961 int sign = permutation_sign(iv, iv + num);
962 result += sign * lorentz_eps(ex_to<idx>(idx1).replace_dim(_ex4), ex_to<idx>(idx2).replace_dim(_ex4), ex_to<idx>(idx3).replace_dim(_ex4), ex_to<idx>(idx4).replace_dim(_ex4))
963 * trace_string(v.begin(), num - 4);
964 }
965 }
966 }
967 }
968 delete[] iv;
969 return trONE * I * result * mul(bv);
970
971 } else { // no gamma5
972
973 // Trace of odd number of gammas is zero
974 if ((num & 1) == 1)
975 return _ex0;
976
977 // Tr gamma.mu gamma.nu = 4 g.mu.nu
978 if (num == 2) {
979 ex b1, i1, b2, i2;
980 base_and_index(e.op(0), b1, i1);
981 base_and_index(e.op(1), b2, i2);
982 return trONE * (lorentz_g(i1, i2) * b1 * b2).simplify_indexed();
983 }
984
985 exvector iv(num), bv(num);
986 for (size_t i=0; i<num; i++)
987 base_and_index(e.op(i), bv[i], iv[i]);
988
989 return trONE * (trace_string(iv.begin(), num) * mul(bv)).simplify_indexed();
990 }
991
992 } else if (e.nops() > 0) {
993
994 // Trace maps to all other container classes (this includes sums)
995 pointer_to_map_function_2args<const std::set<unsigned char> &, const ex &> fcn(dirac_trace, rls, trONE);
996 return e.map(fcn);
997
998 } else
999 return _ex0;
1000}
1001
1002ex dirac_trace(const ex & e, const lst & rll, const ex & trONE)
1003{
1004 // Convert list to set
1005 std::set<unsigned char> rls;
1006 for (const auto & i : rll) {
1007 if (i.info(info_flags::nonnegint))
1008 rls.insert(ex_to<numeric>(i).to_int());
1009 }
1010
1011 return dirac_trace(e, rls, trONE);
1012}
1013
1014ex dirac_trace(const ex & e, unsigned char rl, const ex & trONE)
1015{
1016 // Convert label to set
1017 std::set<unsigned char> rls;
1018 rls.insert(rl);
1019
1020 return dirac_trace(e, rls, trONE);
1021}
1022
1023
1024ex canonicalize_clifford(const ex & e_)
1025{
1026 pointer_to_map_function fcn(canonicalize_clifford);
1027
1028 if (is_a<matrix>(e_) // || is_a<pseries>(e) || is_a<integral>(e)
1029 || e_.info(info_flags::list)) {
1030 return e_.map(fcn);
1031 } else {
1032 ex e=simplify_indexed(e_);
1033 // Scan for any ncmul objects
1034 exmap srl;
1035 ex aux = e.to_rational(srl);
1036 for (auto & i : srl) {
1037
1038 ex lhs = i.first;
1039 ex rhs = i.second;
1040
1041 if (is_exactly_a<ncmul>(rhs)
1042 && rhs.return_type() == return_types::noncommutative
1043 && is_clifford_tinfo(rhs.return_type_tinfo())) {
1044
1045 // Expand product, if necessary
1046 ex rhs_expanded = rhs.expand();
1047 if (!is_a<ncmul>(rhs_expanded)) {
1048 i.second = canonicalize_clifford(rhs_expanded);
1049 continue;
1050
1051 } else if (!is_a<clifford>(rhs.op(0)))
1052 continue;
1053
1054 exvector v;
1055 v.reserve(rhs.nops());
1056 for (size_t j=0; j<rhs.nops(); j++)
1057 v.push_back(rhs.op(j));
1058
1059 // Stupid recursive bubble sort because we only want to swap adjacent gammas
1060 auto it = v.begin(), next_to_last = v.end() - 1;
1061 if (is_a<diracgamma5>(it->op(0)) || is_a<diracgammaL>(it->op(0)) || is_a<diracgammaR>(it->op(0)))
1062 ++it;
1063
1064 while (it != next_to_last) {
1065 if (it[0].compare(it[1]) > 0) {
1066
1067 ex save0 = it[0], save1 = it[1];
1068 ex b1, i1, b2, i2;
1069 base_and_index(it[0], b1, i1);
1070 base_and_index(it[1], b2, i2);
1071 // for Clifford algebras (commutator_sign == -1) metric should be symmetrised
1072 it[0] = (ex_to<clifford>(save0).get_metric(i1, i2, ex_to<clifford>(save0).get_commutator_sign() == -1) * b1 * b2).simplify_indexed();
1073 it[1] = v.size() ? _ex2 * dirac_ONE(ex_to<clifford>(save0).get_representation_label()) : _ex2;
1074 ex sum = ncmul(v);
1075 it[0] = save1;
1076 it[1] = save0;
1077 sum += ex_to<clifford>(save0).get_commutator_sign() * ncmul(std::move(v));
1078 i.second = canonicalize_clifford(sum);
1079 goto next_sym;
1080 }
1081 ++it;
1082 }
1083next_sym: ;
1084 }
1085 }
1086 return aux.subs(srl, subs_options::no_pattern).simplify_indexed();
1087 }
1088}
1089
1090ex clifford_star_bar(const ex & e, bool do_bar, unsigned options)
1091{
1092 pointer_to_map_function_2args<bool, unsigned> fcn(clifford_star_bar, do_bar, options | 1);
1093
1094 // is a child, no need to expand
1095 ex e1= (options & 1 ? e : e.expand());
1096
1097 if (is_a<ncmul>(e1) ) { // reversing order of clifford units
1098 exvector ev, cv;
1099 ev.reserve(e1.nops());
1100 cv.reserve(e1.nops());
1101 // separate clifford and non-clifford entries
1102 for (size_t i= 0; i < e1.nops(); ++i) {
1103 if (is_a<clifford>(e1.op(i)) && is_a<cliffordunit>(e1.op(i).op(0)))
1104 cv.push_back(e1.op(i));
1105 else
1106 ev.push_back(e1.op(i));
1107 }
1108 for (auto i=cv.rbegin(); i!=cv.rend(); ++i) { // reverse order of Clifford units
1109 ev.push_back(i->conjugate());
1110 }
1111 // For clifford_bar an odd number of clifford units reverts the sign
1112 if (do_bar && (cv.size() % 2 == 1))
1113 return -dynallocate<ncmul>(std::move(ev));
1114 else
1115 return dynallocate<ncmul>(std::move(ev));
1116 } else if (is_a<clifford>(e1) && is_a<cliffordunit>(e1.op(0))) {
1117 if (do_bar)
1118 return -e;
1119 else
1120 return e;
1121 } else if (is_a<power>(e1)) {
1122 // apply the procedure to the base of a power
1123 return pow(clifford_star_bar(e1.op(0), do_bar, 0), e1.op(1));
1124 } else if (is_a<add>(e1) || is_a<mul>(e1) || e.info(info_flags::list)) {
1125 // recurse into subexpressions
1126 return e1.map(fcn);
1127 } else // nothing meaningful can be done
1128 return e;
1129}
1130
1131ex clifford_prime(const ex & e)
1132{
1133 pointer_to_map_function fcn(clifford_prime);
1134 if (is_a<clifford>(e) && is_a<cliffordunit>(e.op(0))) {
1135 return -e;
1136 } else if (is_a<add>(e) || is_a<ncmul>(e) || is_a<mul>(e) //|| is_a<pseries>(e) || is_a<integral>(e)
1137 || is_a<matrix>(e) || e.info(info_flags::list)) {
1138 return e.map(fcn);
1139 } else if (is_a<power>(e)) {
1140 return pow(clifford_prime(e.op(0)), e.op(1));
1141 } else
1142 return e;
1143}
1144
1145ex remove_dirac_ONE(const ex & e, unsigned char rl, unsigned options)
1146{
1147 pointer_to_map_function_2args<unsigned char, unsigned> fcn(remove_dirac_ONE, rl, options | 1);
1148 bool need_reevaluation = false;
1149 ex e1 = e;
1150 if (! (options & 1) ) { // is not a child
1151 if (options & 2)
1152 e1 = expand_dummy_sum(e, true);
1153 e1 = canonicalize_clifford(e1);
1154 }
1155
1156 if (is_a<clifford>(e1) && ex_to<clifford>(e1).get_representation_label() >= rl) {
1157 if (is_a<diracone>(e1.op(0)))
1158 return 1;
1159 else
1160 throw(std::invalid_argument("remove_dirac_ONE(): expression is a non-scalar Clifford number!"));
1161 } else if (is_a<add>(e1) || is_a<ncmul>(e1) || is_a<mul>(e1)
1162 || is_a<matrix>(e1) || e1.info(info_flags::list)) {
1163 if (options & 3) // is a child or was already expanded
1164 return e1.map(fcn);
1165 else
1166 try {
1167 return e1.map(fcn);
1168 } catch (std::exception &p) {
1169 need_reevaluation = true;
1170 }
1171 } else if (is_a<power>(e1)) {
1172 if (options & 3) // is a child or was already expanded
1173 return pow(remove_dirac_ONE(e1.op(0), rl, options | 1), e1.op(1));
1174 else
1175 try {
1176 return pow(remove_dirac_ONE(e1.op(0), rl, options | 1), e1.op(1));
1177 } catch (std::exception &p) {
1178 need_reevaluation = true;
1179 }
1180 }
1181 if (need_reevaluation)
1182 return remove_dirac_ONE(e, rl, options | 2);
1183 return e1;
1184}
1185
1186int clifford_max_label(const ex & e, bool ignore_ONE)
1187{
1188 if (is_a<clifford>(e))
1189 if (ignore_ONE && is_a<diracone>(e.op(0)))
1190 return -1;
1191 else
1192 return ex_to<clifford>(e).get_representation_label();
1193 else {
1194 int rl = -1;
1195 for (size_t i=0; i < e.nops(); i++)
1196 rl = (rl > clifford_max_label(e.op(i), ignore_ONE)) ? rl : clifford_max_label(e.op(i), ignore_ONE);
1197 return rl;
1198 }
1199}
1200
1201ex clifford_norm(const ex & e)
1202{
1203 return sqrt(remove_dirac_ONE(e * clifford_bar(e)));
1204}
1205
1206ex clifford_inverse(const ex & e)
1207{
1208 ex norm = clifford_norm(e);
1209 if (!norm.is_zero())
1210 return clifford_bar(e) / pow(norm, 2);
1211 else
1212 throw(std::invalid_argument("clifford_inverse(): cannot find inverse of Clifford number with zero norm!"));
1213}
1214
1215ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr, unsigned char rl)
1216{
1217 if (!ex_to<idx>(mu).is_dim_numeric())
1218 throw(std::invalid_argument("lst_to_clifford(): Index should have a numeric dimension"));
1219 ex e = clifford_unit(mu, metr, rl);
1220 return lst_to_clifford(v, e);
1221}
1222
1223ex lst_to_clifford(const ex & v, const ex & e) {
1224 unsigned min, max;
1225
1226 if (is_a<clifford>(e)) {
1227 ex mu = e.op(1);
1228 ex mu_toggle
1229 = is_a<varidx>(mu) ? ex_to<varidx>(mu).toggle_variance() : mu;
1230 unsigned dim = get_dim_uint(mu);
1231
1232 if (is_a<matrix>(v)) {
1233 if (ex_to<matrix>(v).cols() > ex_to<matrix>(v).rows()) {
1234 min = ex_to<matrix>(v).rows();
1235 max = ex_to<matrix>(v).cols();
1236 } else {
1237 min = ex_to<matrix>(v).cols();
1238 max = ex_to<matrix>(v).rows();
1239 }
1240 if (min == 1) {
1241 if (dim == max)
1242 return indexed(v, mu_toggle) * e;
1243 else if (max - dim == 1) {
1244 if (ex_to<matrix>(v).cols() > ex_to<matrix>(v).rows())
1245 return v.op(0) * dirac_ONE(ex_to<clifford>(e).get_representation_label()) + indexed(sub_matrix(ex_to<matrix>(v), 0, 1, 1, dim), mu_toggle) * e;
1246 else
1247 return v.op(0) * dirac_ONE(ex_to<clifford>(e).get_representation_label()) + indexed(sub_matrix(ex_to<matrix>(v), 1, dim, 0, 1), mu_toggle) * e;
1248 } else
1249 throw(std::invalid_argument("lst_to_clifford(): dimensions of vector and clifford unit mismatch"));
1250 } else
1251 throw(std::invalid_argument("lst_to_clifford(): first argument should be a vector (nx1 or 1xn matrix)"));
1252 } else if (v.info(info_flags::list)) {
1253 if (dim == ex_to<lst>(v).nops())
1254 return indexed(matrix(dim, 1, ex_to<lst>(v)), mu_toggle) * e;
1255 else if (ex_to<lst>(v).nops() - dim == 1)
1256 return v.op(0) * dirac_ONE(ex_to<clifford>(e).get_representation_label()) + indexed(sub_matrix(matrix(dim+1, 1, ex_to<lst>(v)), 1, dim, 0, 1), mu_toggle) * e;
1257 else
1258 throw(std::invalid_argument("lst_to_clifford(): list length and dimension of clifford unit mismatch"));
1259 } else
1260 throw(std::invalid_argument("lst_to_clifford(): cannot construct from anything but list or vector"));
1261 } else
1262 throw(std::invalid_argument("lst_to_clifford(): the second argument should be a Clifford unit"));
1263}
1264
1267static ex get_clifford_comp(const ex & e, const ex & c, bool root=true)
1268{
1269 // make expansion on the top-level call only
1270 ex e1=(root? e.expand() : e);
1271
1272 pointer_to_map_function_2args<const ex &, bool> fcn(get_clifford_comp, c, false);
1273 int ival = ex_to<numeric>(ex_to<idx>(c.op(1)).get_value()).to_int();
1274 int rl=ex_to<clifford>(c).get_representation_label();
1275
1276 if ( (is_a<add>(e1) || e1.info(info_flags::list) || is_a<matrix>(e1))) {
1277 return e1.map(fcn);
1278 } else if (is_a<ncmul>(e1) || is_a<mul>(e1)) {
1279 // searches are done within products only
1280 exvector ev, all_dummy=get_all_dummy_indices(e1);
1281 bool found=false, same_value_found=false;
1282 ex dummy_ind=0;
1283 ev.reserve(e1.nops());
1284 for (size_t i=0; i < e1.nops(); ++i) {
1285 // look for a Clifford unit with the same metric and representation label,
1286 // if found remember its index
1287 if (is_a<clifford>(e1.op(i)) && ex_to<clifford>(e1.op(i)).get_representation_label() == rl
1288 && is_a<cliffordunit>(e1.op(i).op(0)) && ex_to<clifford>(e1.op(i)).same_metric(c)) { // same Clifford unit
1289 if (found)
1290 throw(std::invalid_argument("get_clifford_comp(): expression is a Clifford multi-vector"));
1291 found=true;
1292 if (ex_to<idx>(e1.op(i).op(1)).is_numeric() &&
1293 (ival == ex_to<numeric>(ex_to<idx>(e1.op(i).op(1)).get_value()).to_int())) {
1294 same_value_found = true; // desired index value is found
1295 } else if ((std::find(all_dummy.begin(), all_dummy.end(), e1.op(i).op(1)) != all_dummy.end())
1296 || (is_a<varidx>(e1.op(i).op(1))
1297 && std::find(all_dummy.begin(), all_dummy.end(),
1298 ex_to<varidx>(e1.op(i).op(1)).toggle_variance()) != all_dummy.end())) {
1299 dummy_ind=(e1.op(i).op(1)); // suitable dummy index found
1300 } else
1301 ev.push_back(e.op(i)); // another index value
1302 } else
1303 ev.push_back(e1.op(i));
1304 }
1305
1306 if (! found) // no Clifford units found at all
1307 throw(std::invalid_argument("get_clifford_comp(): expression is not a Clifford vector to the given units"));
1308
1309 ex res=dynallocate<ncmul>(std::move(ev));
1310 if (same_value_found) {
1311 return res;
1312 } else if (! dummy_ind.is_zero()) { // a dummy index was found
1313 if (is_a<varidx>(dummy_ind))
1314 dummy_ind = ex_to<varidx>(dummy_ind).toggle_variance();
1315 return res.subs(dummy_ind==ival, subs_options::no_pattern);
1316 } else // found a Clifford unit with another index
1317 return 0;
1318 } else if (e1.is_zero()) {
1319 return 0;
1320 } else if (is_a<clifford>(e1) && is_a<cliffordunit>(e1.op(0)) && ex_to<clifford>(e1).same_metric(c)) {
1321 if (ex_to<idx>(e1.op(1)).is_numeric() &&
1322 (ival == ex_to<numeric>(ex_to<idx>(e1.op(1)).get_value()).to_int()) )
1323 return 1;
1324 else
1325 return 0;
1326 } else
1327 throw(std::invalid_argument("get_clifford_comp(): expression is not usable as a Clifford vector"));
1328}
1329
1330lst clifford_to_lst(const ex & e, const ex & c, bool algebraic)
1331{
1332 GINAC_ASSERT(is_a<clifford>(c));
1333 ex mu = c.op(1);
1334 if (! ex_to<idx>(mu).is_dim_numeric())
1335 throw(std::invalid_argument("clifford_to_lst(): index should have a numeric dimension"));
1336 unsigned int D = ex_to<numeric>(ex_to<idx>(mu).get_dim()).to_int();
1337
1338 if (algebraic) // check if algebraic method is applicable
1339 for (unsigned int i = 0; i < D; i++)
1340 if (pow(c.subs(mu == i, subs_options::no_pattern), 2).is_zero()
1341 || (! is_a<numeric>(pow(c.subs(mu == i, subs_options::no_pattern), 2))))
1342 algebraic = false;
1343 lst V;
1344 ex v0 = remove_dirac_ONE(canonicalize_clifford(e+clifford_prime(e)))/2;
1345 if (! v0.is_zero())
1346 V.append(v0);
1347 ex e1 = canonicalize_clifford(e - v0 * dirac_ONE(ex_to<clifford>(c).get_representation_label()));
1348 if (algebraic) {
1349 for (unsigned int i = 0; i < D; i++)
1350 V.append(remove_dirac_ONE(
1351 simplify_indexed(canonicalize_clifford(e1 * c.subs(mu == i, subs_options::no_pattern) + c.subs(mu == i, subs_options::no_pattern) * e1))
1352 / (2*pow(c.subs(mu == i, subs_options::no_pattern), 2))));
1353 } else {
1354 try {
1355 for (unsigned int i = 0; i < D; i++)
1356 V.append(get_clifford_comp(e1, c.subs(c.op(1) == i, subs_options::no_pattern)));
1357 } catch (std::exception &p) {
1358 /* Try to expand dummy summations to simplify the expression*/
1359 e1 = canonicalize_clifford(expand_dummy_sum(e, true));
1360 V.remove_all();
1361 v0 = remove_dirac_ONE(canonicalize_clifford(e1+clifford_prime(e1)))/2;
1362 if (! v0.is_zero()) {
1363 V.append(v0);
1364 e1 = canonicalize_clifford(e1 - v0 * dirac_ONE(ex_to<clifford>(c).get_representation_label()));
1365 }
1366 for (unsigned int i = 0; i < D; i++)
1367 V.append(get_clifford_comp(e1, c.subs(c.op(1) == i, subs_options::no_pattern)));
1368 }
1369 }
1370 return V;
1371}
1372
1373
1374ex clifford_moebius_map(const ex & a, const ex & b, const ex & c, const ex & d, const ex & v, const ex & G, unsigned char rl)
1375{
1376 ex x, D, cu;
1377
1378 if (! is_a<matrix>(v) && ! v.info(info_flags::list))
1379 throw(std::invalid_argument("clifford_moebius_map(): parameter v should be either vector or list"));
1380
1381 if (is_a<clifford>(G)) {
1382 cu = G;
1383 } else {
1384 if (is_a<indexed>(G)) {
1385 D = ex_to<idx>(G.op(1)).get_dim();
1386 varidx mu(dynallocate<symbol>(), D);
1387 cu = clifford_unit(mu, G, rl);
1388 } else if (is_a<matrix>(G)) {
1389 D = ex_to<matrix>(G).rows();
1390 idx mu(dynallocate<symbol>(), D);
1391 cu = clifford_unit(mu, G, rl);
1392 } else throw(std::invalid_argument("clifford_moebius_map(): metric should be an indexed object, matrix, or a Clifford unit"));
1393
1394 }
1395
1396 x = lst_to_clifford(v, cu);
1397 ex e = clifford_to_lst(simplify_indexed(canonicalize_clifford((a * x + b) * clifford_inverse(c * x + d))), cu, false);
1398 return (is_a<matrix>(v) ? matrix(ex_to<matrix>(v).rows(), ex_to<matrix>(v).cols(), ex_to<lst>(e)) : e);
1399}
1400
1401ex clifford_moebius_map(const ex & M, const ex & v, const ex & G, unsigned char rl)
1402{
1403 if (is_a<matrix>(M) && (ex_to<matrix>(M).rows() == 2) && (ex_to<matrix>(M).cols() == 2))
1404 return clifford_moebius_map(M.op(0), M.op(1), M.op(2), M.op(3), v, G, rl);
1405 else
1406 throw(std::invalid_argument("clifford_moebius_map(): parameter M should be a 2x2 matrix"));
1407}
1408
1409} // namespace GiNaC
Interface to GiNaC's sums of expressions.
Archiving of GiNaC expressions.
#define GINAC_ASSERT(X)
Assertion macro for checking invariances.
Definition: assertion.h:33
This class stores all properties needed to record/retrieve the state of one object of class basic (or...
Definition: archive.h:49
This class is the ABC (abstract base class) of GiNaC's class hierarchy.
Definition: basic.h:105
unsigned hashvalue
hash value
Definition: basic.h:303
void ensure_if_modifiable() const
Ensure the object may be modified without hurting others, throws if this is not the case.
Definition: basic.cpp:894
unsigned flags
of type status_flags
Definition: basic.h:302
virtual int compare_same_type(const basic &other) const
Returns order relation between two objects of same type.
Definition: basic.cpp:719
This class holds an object representing an element of the Clifford algebra (the Dirac gamma matrices)...
Definition: clifford.h:41
ex get_metric() const
Definition: clifford.h:67
ex metric
Metric of the space, all constructors make it an indexed object.
Definition: clifford.h:85
bool match_same_type(const basic &other) const override
Returns true if the attributes of two objects are similar enough for a match.
Definition: clifford.cpp:247
bool same_metric(const ex &other) const
Definition: clifford.cpp:177
void do_print_tree(const print_tree &c, unsigned level) const
Definition: clifford.cpp:298
void do_print_dflt(const print_dflt &c, unsigned level) const
Definition: clifford.cpp:262
size_t nops() const override
Number of operands/members.
Definition: clifford.h:72
ex & let_op(size_t i) override
Return modifiable operand/member at position i.
Definition: clifford.cpp:207
unsigned precedence() const override
Return relative operator precedence (for parenthezing output).
Definition: clifford.h:54
void do_print_latex(const print_latex &c, unsigned level) const
Definition: clifford.cpp:285
ex subs(const exmap &m, unsigned options=0) const override
Substitute a set of objects by arbitrary expressions.
Definition: clifford.cpp:219
ex op(size_t i) const override
Return operand/member at position i.
Definition: clifford.cpp:198
int commutator_sign
It is the sign in the definition e~i e~j +/- e~j e~i = B(i, j) + B(j, i)
Definition: clifford.h:86
return_type_t return_type_tinfo() const override
Definition: clifford.cpp:117
unsigned char representation_label
Representation label to distinguish independent spin lines.
Definition: clifford.h:84
clifford(const ex &b, unsigned char rl=0)
Construct object without any indices.
Definition: clifford.cpp:96
void read_archive(const archive_node &n, lst &sym_lst) override
Load (deserialize) the object from an archive node.
Definition: clifford.cpp:126
void archive(archive_node &n) const override
Save (serialize) the object into archive node.
Definition: clifford.cpp:137
int get_commutator_sign() const
Definition: clifford.h:70
This class represents the Clifford algebra generators (units).
Definition: clifford.h:105
Wrapper template for making GiNaC classes out of STL containers.
Definition: container.h:73
This class represents the Dirac gamma5 object which anticommutates with all other gammas.
Definition: clifford.h:140
This class represents the Dirac gammaL object which behaves like 1/2 (1-gamma5).
Definition: clifford.h:157
This class represents the Dirac gammaL object which behaves like 1/2 (1+gamma5).
Definition: clifford.h:174
This class represents the Dirac gamma Lorentz vector.
Definition: clifford.h:122
This class represents the Clifford algebra unity element.
Definition: clifford.h:92
Lightweight wrapper for GiNaC's symbolic objects.
Definition: ex.h:72
exvector get_free_indices() const
Definition: ex.h:206
bool is_equal(const ex &other) const
Definition: ex.h:345
ex subs(const exmap &m, unsigned options=0) const
Definition: ex.h:841
bool is_zero() const
Definition: ex.h:213
void print(const print_context &c, unsigned level=0) const
Print expression to stream.
Definition: ex.cpp:56
ex op(size_t i) const
Definition: ex.h:136
This class holds one index of an indexed object.
Definition: idx.h:36
This class holds an indexed expression.
Definition: indexed.h:40
friend ex simplify_indexed(const ex &e, exvector &free_indices, exvector &dummy_indices, const scalar_products &sp)
Simplify indexed expression, return list of free indices.
Definition: indexed.cpp:1044
void printindices(const print_context &c, unsigned level) const
Definition: indexed.cpp:165
ex get_symmetry() const
Return symmetry properties.
Definition: indexed.h:180
indexed(const ex &b)
Construct indexed object with no index.
Definition: indexed.cpp:64
ex symtree
Index symmetry (tree of symmetry objects)
Definition: indexed.h:192
Symbolic matrices.
Definition: matrix.h:38
This class is a wrapper around CLN-numbers within the GiNaC class hierarchy.
Definition: numeric.h:82
Base class for print_contexts.
Definition: print.h:103
Context for default (ginsh-parsable) output.
Definition: print.h:115
Context for latex-parsable output.
Definition: print.h:123
Context for tree-like output for debugging.
Definition: print.h:147
@ no_pattern
disable pattern matching
Definition: flags.h:51
This class holds one of GiNaC's predefined special tensors such as the delta and the metric tensors.
Definition: tensor.h:35
This class holds an index with a variance (co- or contravariant).
Definition: idx.h:112
Interface to GiNaC's clifford algebra (Dirac gamma) objects.
Interface to GiNaC's light-weight expression handles.
ex unit
Definition: factor.cpp:2191
unsigned options
Definition: factor.cpp:2475
size_t n
Definition: factor.cpp:1432
size_t c
Definition: factor.cpp:757
mvec m
Definition: factor.cpp:758
Interface to GiNaC's indices.
Definition of GiNaC's lst.
Interface to symbolic matrices.
Interface to GiNaC's products of expressions.
Definition: add.cpp:38
static bool is_dirac_slash(const ex &seq0)
Definition: clifford.cpp:255
ex remove_dirac_ONE(const ex &e, unsigned char rl, unsigned options)
Replaces dirac_ONE's (with a representation_label no less than rl) in e with 1.
Definition: clifford.cpp:1145
ex clifford_inverse(const ex &e)
Calculation of the inverse in the Clifford algebra.
Definition: clifford.cpp:1206
const symmetry & not_symmetric()
Definition: symmetry.cpp:350
ex clifford_unit(const ex &mu, const ex &metr, unsigned char rl)
Create a Clifford unit object.
Definition: clifford.cpp:739
const ex _ex1_2
Definition: utils.cpp:381
std::map< ex, ex, ex_is_less > exmap
Definition: basic.h:50
ex clifford_moebius_map(const ex &a, const ex &b, const ex &c, const ex &d, const ex &v, const ex &G, unsigned char rl)
Calculations of Moebius transformations (conformal map) defined by a 2x2 Clifford matrix (a b\c d) in...
Definition: clifford.cpp:1374
static unsigned get_dim_uint(const ex &e)
Definition: clifford.cpp:728
matrix inverse(const matrix &m)
Definition: matrix.h:150
bool are_ex_trivially_equal(const ex &e1, const ex &e2)
Compare two objects of class quickly without doing a deep tree traversal.
Definition: ex.h:699
ex dirac_gamma(const ex &mu, unsigned char rl)
Create a Dirac gamma object.
Definition: clifford.cpp:781
print_func< print_dflt >(&diracone::do_print). print_func< print_latex >(&diracone
Definition: clifford.cpp:51
static ex get_clifford_comp(const ex &e, const ex &c, bool root=true)
Auxiliary structure to define a function for striping one Clifford unit from vectors.
Definition: clifford.cpp:1267
const symmetry & symmetric2()
Definition: symmetry.cpp:356
ex subs(const ex &thisex, const exmap &m, unsigned options=0)
Definition: ex.h:846
GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(add, expairseq, print_func< print_context >(&add::do_print). print_func< print_latex >(&add::do_print_latex). print_func< print_csrc >(&add::do_print_csrc). print_func< print_tree >(&add::do_print_tree). print_func< print_python_repr >(&add::do_print_python_repr)) add
Definition: add.cpp:40
ex op(const ex &thisex, size_t i)
Definition: ex.h:826
lst clifford_to_lst(const ex &e, const ex &c, bool algebraic)
An inverse function to lst_to_clifford().
Definition: clifford.cpp:1330
bool find(const ex &thisex, const ex &pattern, exset &found)
Definition: ex.h:745
GINAC_IMPLEMENT_REGISTERED_CLASS_OPT_T(lst, basic, print_func< print_context >(&lst::do_print). print_func< print_tree >(&lst::do_print_tree)) template<> bool lst GINAC_BIND_UNARCHIVER(lst)
Specialization of container::info() for lst.
Definition: lst.cpp:42
ex lst_to_clifford(const ex &v, const ex &mu, const ex &metr, unsigned char rl)
List or vector conversion into the Clifford vector.
Definition: clifford.cpp:1215
std::vector< ex > exvector
Definition: basic.h:48
Definition: ex.h:987
Interface to GiNaC's non-commutative products of expressions.
Makes the interface to the underlying bignum package available.
Interface to GiNaC's overloaded operators.
Interface to GiNaC's symbolic exponentiation (basis^exponent).
Interface to relations between expressions.
To distinguish between different kinds of non-commutative objects.
Definition: registrar.h:44
Interface to GiNaC's symbolic objects.
Interface to GiNaC's symmetry definitions.
Interface to several small and furry utilities needed within GiNaC but not of any interest to the use...
#define DEFAULT_PRINT_LATEX(classname, text, latex)
Definition: utils.h:622
#define DEFAULT_CTOR(classname)
Definition: utils.h:606
#define DEFAULT_COMPARE(classname)
Definition: utils.h:609

This page is part of the GiNaC developer's reference. It was generated automatically by doxygen. For an introduction, see the tutorial.